

User Guide
BT900 smartBASIC Extensions
Release 9.1.12.0

This guide pertains to BT900-specific smartBASIC routines and functions. For information
on functions and routines that apply to all smartBASIC modules, see the smartBASIC Core
Manual.

http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf
http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

2

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

REVISION HISTORY
Version Date Notes Approver

9.1.2.0 22 Oct 2014 Initial Release Jonathan Kaye

9.1.4.0 17 Feb 2015 Addition of RTC Alarm and Low Power Modes sections Jonathan Kaye

9.1.4.6 5 March 2015 Added SPP parameter function, deprecate cfg keys. Ben Whitten

9.1.7.1 28 April 2015 Updates to the following sections:
BLE Security Manager Functions
BTC Security Manager Functions
BTC Pairing/Bonding Functions
Added Class of device functions.
Added BleAdvertConfig.

Ben Whitten

9.1.7.3 5 June 2015 Added HID functions
Cleaned up GPIO section

Ben Whitten

9.1.8.0 24 Aug 2015 Tweaked HID API
Added HID Report section
Added Sniff section
Transferred to new template

Ben Whitten

9.1.9.1 17 Sep 2015 Re arranged GATT Client events and messages
Added StreamBridgeConfig section and event

Ben Whitten

9.1.10.0 29 Sept 2015 Rev’d up to 9.1.10.0 version; Updated StreamBridge
script.

Ben Whitten

9.1.10.5 2 Feb 2016 Typo error OOB Available msg id is 25 not 23 Mahendra Tailor

9.1.10.18 20 June 2016 Add Whitelist section
Added 2Mbaud
Manual connection parameter negotiation
Added module specific ATI section

Ben Whitten

9.1.12.0

2 September 2016

19 Jan 2017

Added BleAttrMetadataEx description
Corrected definition of BtcHIDRead and Write

Ben Whitten

Added CFG Key 51 and Event EVCHARVALEX Mahendra Tailor

Added SPP status and break commands and event
section

Ben Whitten

© Copyright 2017 Laird. All Rights Reserved. Any information furnished by Laird and its agents is believed to be accurate and reliable. All specifications are
subject to change without notice. Responsibility for the use and application of Laird materials or products rests with the end user since Laird and its agents
cannot be aware of all potential uses. Laird makes no warranties as to non-infringement nor as to the fitness, merchantability, or sustainability of any Laird
materials or products for any specific or general uses. Laird, Laird Technologies, Inc., or any of its affiliates or agents shall not be liable for incidental or
consequential damages of any kind. All Laird products are sold pursuant to the Laird Terms and Conditions of Sale in effect from time to time, a copy of
which will be furnished upon request. When used as a tradename herein, Laird means Laird PLC or one or more subsidiaries of Laird PLC (Laird
Technologies, Inc; Laird Technologies; Laird – Lenexa; Laird – Akron; Laird – Taiwan; Laird – Wooburn; Laird – Taiwan (or Zhubei City); Summit Data
Communications, Inc.; Ezurio, Ltd.; Aerocomm, Inc.). Laird™, Laird Technologies™, corresponding logos, and other marks are trademarks or registered
trademarks of Laird. Other marks may be the property of third parties. Nothing herein provides a license under any Laird or any third party intellectual
property right.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

3

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

CONTENTS

Introduction ... 13

What Does a BTC/BLE Module Contain? ... 13

Module Configuration ... 14

Interactive Mode Commands .. 14

AT I or ATI .. 14

AT I num ... 14

AT+CFG .. 16

AT+BTD * ... 20

AT+BLX ... 20

AT&F .. 21

Core Language Built-in Routines ... 21

Information Routines .. 21

SYSINFO ... 21

SYSINFO$... 24

UART Interface .. 25

UartOpen ... 25

I2C – Two Wire Interface (TWI) ... 25

SPI Interface ... 26

SpiOpen ... 26

Input/Output Interface Routines... 27

Events and Messages ... 28

GpioSetFunc... 28

GpioConfigPwm ... 29

GpioRead ... 32

GpioWrite .. 33

GpioBindEvent/GpioAssignEvent .. 36

GpioUnbindEvent/GpioUnAssignEvent ... 38

Miscellaneous Routines ... 38

ERASEFILESYSTEM ... 38

BTC Extensions Built-in Routines ... 40

Generic Access Profile Functions ... 40

Events and Messages ... 40

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

4

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVINQRESP .. 40

EVBTC_INQUIRY_TIMEOUT ... 42

BtcInquiryConfig .. 42

BtcInquiryStart ... 43

BtcInquiryCancel .. 43

BtcDiscoveryConfig .. 44

BtcSetDiscoverable .. 46

BtcSetConnectable .. 47

BtcSetPairable ... 48

BtcInquiryGetReport.. 48

BtcInquiryGetReportFull .. 49

BtcGetClassOfDevice ... 50

BtcSetClassOfDevice .. 50

BtcGetEIRbyIndex .. 51

BtcGetEIRbyTag ... 53

BtcGetFriendlyName ... 55

BtcGetRemoteFriendlyName... 56

BtcQueryRemoteFriendlyName .. 56

BtcSetFriendlyName .. 56

BtcSniffEnable .. 57

BtcSniffDisable ... 59

BtcQuerySniffSubrating ... 61

BtcQueryModeChange .. 64

BtcSniffSubratingEnable .. 66

Human Interface Device .. 69

Events and Messages ... 69

EVHIDCONN .. 69

EVHIDDISCON ... 70

EVHIDCONTROL ... 71

EVHIDTXEMPTY .. 71

EVBTC_HID_DATA_RECEIVED ... 72

BtcHIDDeviceOpen .. 73

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

5

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcHIDHostOpen .. 74

BtcHIDClose ... 75

BtcHIDConnect .. 75

BtcHIDDisconnect .. 76

BtcHIDRead .. 78

BtcHIDWrite ... 80

BtcHIDControl .. 81

BtcHIDConfig.. 83

Serial Port Profile ... 83

Events and Messages ... 83

EVSPPCONN .. 83

EVBTC_SPP_CONN_TIMEOUT ... 84

EVBTC_SPP_DATA_RECEIVED ... 84

EVSPPTXEMPTY.. 84

EVSPPDISCON ... 84

BtcSPPSetParams ... 87

BtcSPPOpen ... 87

BtcSPPClose ... 88

BtcSPPWrite ... 89

BtcSPPRead .. 90

BtcSPPConnect .. 92

BtcSPPDisconnect .. 93

Stream Functions ... 95

Events and Messages ... 95

EVSTREAMIDLE .. 95

StreamGetUartHandle ... 95

StreamGetSPPHandle .. 96

StreamBridge ... 96

StreamUnBridge .. 98

StreamBridgeConfig ... 99

Pairing, Bonding, and Security Manager Functions ... 99

Events and Messages ... 99

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

6

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVBTC_PAIR_REQUEST .. 99

EVBTC_OOB_AVAILABLE_REQUEST ... 100

EVBTC_PIN_REQUEST ... 101

EVBTC_PAIR_RESULT .. 101

EVBTC_AUTHREQ ... 103

EVBTC_PASSKEY ... 105

BtcGetPAIRRequestBDAddr ... 105

BtcGetPINRequestBDAddr ... 105

BtcSendPAIRResp .. 105

BtcSendPINResp .. 106

BtcSavePairings .. 106

BtcPair.. 107

BtcBondingStats .. 109

BtcBondingEraseKey .. 110

BtcBondingEraseAll .. 111

BtcBondingPersistKey .. 112

BtcBondingGetFirst .. 113

BtcBondingGetNext ... 115

BtcSecMngrPasskey ... 116

BtcSecMngrJustWorksConf ... 118

BtcSecMngrOOBAvailable ... 119

BtcSecMngrOOBPref ... 121

BtcSecMngrRetrieveLocalOOBKey .. 122

BtcSecMngrOOBKey .. 123

BtcSecMngrIoCap .. 125

Miscellaneous Functions ... 127

Events and Messages ... 127

EVBTC_DISCOV_TIMEOUT .. 127

EVBTC_REMOTENAME_RECEIVED ... 127

EVBTC_MODE_CHANGE .. 127

EVBTC_SNIFF_SUBRATING .. 127

BtcTxPowerSet ... 127

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

7

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcSetPNPInformation ... 128

BtcGetBDAddrFromHandle ... 129

BtcGetHandleFromBDAddr ... 129

BLE Extensions Built-in Routines ... 131

Bluetooth Address ... 131

BleSetAddressType .. 132

Events and Messages... 132

EVBLE_ADV_TIMEOUT ... 132

EVBLE_CONN_TIMEOUT .. 133

EVBLE_ADV_REPORT ... 133

EVBLE_FAST_PAGED .. 133

EVBLE_SCAN_TIMEOUT ... 133

EVBLEMSG ... 134

EVDISCON .. 136

EVCONNPARAMREQ .. 137

EVCHARVALEX ... 138

EVCHARVAL ... 140

EVCHARHVC ... 143

EVCHARCCCD ... 143

EVCHARSCCD ... 146

EVCHARDESC ... 151

EVNOTIFYBUF .. 154

Miscellaneous Functions ... 157

BleTxPowerSet ... 157

BleTxPwrWhilePairing ... 158

BleGetConnHandleFromAddr .. 160

BleGetAddrFromConnHandle .. 162

Advertising Functions .. 164

BleAdvertStart ... 164

BleAdvertStop .. 166

BleAdvertConfig ... 167

BleAdvRptInit ... 168

BleScanRptInit ... 169

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

8

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleAdvRptGetSpace ... 169

BleAdvRptAddUuid16 .. 170

BleAdvRptAddUuid128 .. 171

BleAdvRptAppendAD ... 172

BleAdvRptsCommit .. 173

Scanning Functions .. 174

BleScanStart ... 174

BleScanAbort ... 176

BleScanStop ... 177

BleScanFlush .. 178

BleScanConfig .. 179

BleScanGetAdvReport ... 181

BleScanGetAdvReportEx .. 184

BleGetADbyIndex... 184

BleGetADbyTag .. 186

BleScanGetPagerAddr ... 188

Connection Functions .. 189

Events and Messages ... 189

BleConnect... 190

BleConnectCancel .. 192

BleConnectConfig .. 194

BleDisconnect .. 196

BleSetCurConnParms ... 197

BleGetCurConnParms .. 200

BleConnMngrUpdCfg ... 201

Whitelist Management Functions ... 201

BleWhitelistCreate ... 202

BleWhitelistDestroy ... 205

BleWhitelistClear ... 205

BleWhitelistSetFilter .. 206

BleWhitelistAddAddr ... 206

BleWhitelistAddIndex .. 207

BleWhitelistInfo ... 207

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

9

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

GATT Server Functions .. 208

Events and Messages ... 215

BleGapSvcInit ... 215

BleGetDeviceName$.. 217

BleSvcRegDevInfo .. 218

BleHandleUuid16 ... 219

BleHandleUuid128 ... 220

BleHandleUuidSibling .. 221

BleServiceNew ... 222

BleServiceCommit.. 224

BleSvcAddIncludeSvc ... 224

BleAttrMetadata .. 226

BleAttrMetadataEx .. 228

BleCharNew ... 230

BleCharDescUserDesc .. 232

BleCharDescPrstnFrmt ... 233

BleCharDescAdd .. 235

BleCharCommit .. 237

BleCharValueRead ... 239

BleCharValueWrite .. 241

BleCharValueNotify ... 243

BleCharValueIndicate .. 246

BleCharDescRead ... 249

GATT Client Functions ... 252

Events and Messages ... 254

EVGATTCTOUT .. 254

EVDISCPRIMSVC ... 256

EVDISCCHAR .. 256

EVDISCDESC ... 257

EVFINDCHAR .. 257

EVFINDDESC ... 257

EVATTRREAD ... 258

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

10

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVATTRWRITE ... 258

EVNOTIFYBUF .. 259

EVATTRNOTIFY .. 259

BleGattcOpen .. 259

BleGattcClose .. 261

BleDiscServiceFirst / BleDiscServiceNext... 262

BleDiscCharFirst / BleDiscCharNext ... 267

BleDiscDescFirst /BleDiscDescNext ... 274

BleGattcFindChar ... 280

BleGattcFindDesc... 285

BleGattcRead/BleGattcReadData .. 290

BleGattcWrite .. 294

BleGattcWriteCmd ... 298

BleGattcNotifyRead ... 301

Attribute Encoding Functions .. 306

BleEncode8 .. 306

BleEncode16 .. 307

BleEncode24 .. 308

BleEncode32 .. 309

BleEncodeFLOAT .. 310

BleEncodeSFLOATEX .. 311

BleEncodeSFLOAT .. 312

BleEncodeTIMESTAMP .. 314

BleEncodeSTRING .. 315

BleEncodeBITS ... 315

Attribute Decoding Functions ... 316

BleDecodeS8 .. 317

BleDecodeU8 ... 318

BleDecodeS16 .. 319

BleDecodeU16 ... 321

BleDecodeS24 .. 322

BleDecodeU24 ... 323

BleDecode32 .. 325

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

11

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleDecodeFLOAT ... 326

BleDecodeSFLOAT ... 327

BleDecodeTIMESTAMP .. 329

BleDecodeSTRING .. 330

BleDecodeBITS ... 331

Pairing, Bonding, and Security Manager Functions ... 333

Pairing and Bonding Functions .. 333

BleBondingStats ... 333

BleBondingPersistKey ... 334

BleBondingIsTrusted ... 335

BleBondingEraseKey ... 335

BleBondingEraseAll ... 336

BleBondMngrGetInfo .. 337

Security Manager Functions .. 338

Events and Messages .. 338

BleSecMngrJustWorksConf ... 338

BleSecMngrOobPref .. 338

BleSecMngrOobAvailable .. 339

BleAcceptPairing .. 339

BleSecMngrPasskey ... 340

BleSecMngrOOBkey .. 342

BleSecMngrKeySizes ... 344

BleSecMngrIoCap ... 344

BleSecMngrBondReq .. 345

BlePair .. 345

BleEncryptConnection .. 349

HID Report parsing .. 352

HIDReportInit ... 352

HIDReportAppendInt ... 353

HIDReportAppendStr ... 354

HIDReportImport ... 355

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

12

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

HIDReportExport ... 356

HIDReportExtractInt .. 357

HIDReportExtractStr .. 358

HIDReportDestroy ... 359

RTC Alarm .. 360

RTCSetTime .. 361

RTCGetTime$... 362

RTCGetTime ... 362

RTCSetAlarm .. 363

RTCSetAlarmDuration .. 364

RTCGetAlarm$... 366

RTCGetAlarm ... 366

RTCSetFormat .. 367

RTCSetMinuteAlarm .. 369

RTCSetHourAlarm .. 371

RTCSetDayAlarm .. 372

RTCReset .. 373

Low Power Modes ... 374

Events and Messages... 375

Miscellaneous .. 376

Bluetooth Result Codes ... 376

Acknowledgements ... 378

License Terms .. 378

Disclaimer ... 378

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

13

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

INTRODUCTION

This user guide provides detailed information on BT900-specific smartBASIC extensions which provides a high-
level managed interface to the underlying Bluetooth stack in order to manage the following:

 Bluetooth Classic (BTC) Inquiries, discovery, connections.
 Serial Port Profile (SPP) and Human Interface Device (HID).
 Bluetooth Low Energy (BLE) security and bonding
 BLE advertisments and connections
 GATT Table: Services, characteristics, descriptors.
 GATT server/client operation
 Attribute encoding and decoding
 Laird custom VSP service
 Power management
 Wireless status
 Events related to the above

What Does a BTC/BLE Module Contain?

Our smartBASIC-based BTC/BLE modules are designed to provide a complete wireless processing solution. Each
one contains:

 A highly integrated radio with an integrated antenna (external antenna options are also available)
 BTC/BLE Physical and Link layer
 Higher level stack
 Multiple SIO and ADC
 Wired communication interfaces such as UART, I2C, and SPI
 A smartBASIC run-time engine
 Program accessible flash memory, which contains a robust flash file system exposing a conventional file

system and a database for storing user configuration data

For simple end devices, these modules can completely replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BTC/BLE smartBASIC module from a
hardware perspective on the left and a firmware/software perspective on the right.

44 connection pads

UART GPIO ADCI2C SPI

ARM Cortex M3
(smartBASIC)

384KB Flash

32KB RAM

Internal Antenna UFLOR

BTC/BLE Radio

I/
O

, U
A

R
T,

 I2
C

, S
P

I D
ri

ve
rs

BTC/BLE Stack

Non-Vol File
System for
smartBASIC

Apps

Non-Vol
Data

Storage

smartBASIC run-time engine
(provides safe access to BTC/BLE stack,

drivers and non-vol stores)

User smartBASIC Application

Example App

 PRINT “Laird BT900 Module”

 WAITEVENT

Figure 1: Bluetooth smartBASIC module block diagram

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

14

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate to interactive
mode operation or alter the behaviour of the smartBASIC runtime engine. These configuration objects are
stored in non-volatile flash and are retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in interactive
mode and the command AT+CFG must be used. To read current values of these objects use the command
AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

INTERACTIVE MODE COMMANDS

Below are some BT900-specific AT commands. In the case of ATI we list the extensions to core.

AT I or ATI

COMMAND

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules.

AT I num

Returns \n10\tMM\tInformation\r
\n00\r

Where

\n = linefeed character 0x0A
\t = horizontal tab character 0x09
MM = a number (see below)
Information = string consisting of information requested associated with MM
\r = carriage return character 0x0D

Arguments

num Integer Constant
A number in the range of 0 to 65,535. Currently defined numbers are:

1 Stack version

3 Version number of module firmware

4 IEEE BT Address

14 Random static BLE address

26 BTE Bonding database segment

36 BTC Bonding database segment

44 Current random BLE address

2000 Reset persistence value

2001 Reset reason

2002 Timer resolution

2003 Number of timers

2004 Tick resolution

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

15

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

2005 LMP version

2006 LMP Sub version

2007 Company ID

2008 BLE transmit power

2009 Total number of BLE bonds

2041 As above

2042 Number of rolling bonds

2010 Total BLE bonds with IRK

2011 Total BLE bonds with CSRK

2012 Maximum BLE bonds

2018 Current BLE TX power

2040 As above

2043 Minimum rolling BLE bonds

2013 Max attribute length

2014 Number of BLE transmission buffers (Unused)

2015 Unused BLE transmission buffers (Unused)

2016
Radio activity state:

Bitmask : 0 advertising, 1 connected, 2 Scanning, 3 Initiating

2018 BLE transmit power whilst pairing

2019 Default ring buffer size for notify/indicates

2020 Maximum ring buffer size for notify/indicates

2021 Stack side mark

2022 Stack size in bytes

2032 Initial heap size

2025 MCU frequency trimming value

2026 MCU temperature trimming value

2050 Maximum BTC bonds

2051 Total BTC bonds

2052 Rolling BTC bonds

2100 Dropped stack events

2300 MCU operating frequency

2301 ADC config

2302 RTC format

4020 Stack memory usage

4021 Stack free memory

4022 Largest fragment available to stack

4023 Stack failed allocations

Interactive
Command

Yes

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

16

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

‘Example:

AT i 3

10 3 2.0.1.2

00

AT I 4

10 4 01 D31A920731B0

AT i is a core command with module specific entries

AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are comparable to S registers
in modems. Their values are kept over a power cycle but are deleted if the AT&F* command is used to
clear the file system.

If a configuration key that you need isn’t listed below, use the functions NvRecordSet() and
NvRecordGet() to set and get these keys respectively.

The “num value” syntax is used to set a new value and the “num ?” syntax is used to query the current
value. When the value is read the syntax of the response is:

27 0xhhhhhhhh (dddd)
…where 0xhhhhhhhh is an eight hexdigit number which is 0 padded at the left and dddd is the decimal
signed value.

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

num
Integer Constant
The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit
words.

value
Integer_constant
This is the new value for the configuration key and the syntax allows decimal, octal, hexadecimal, or
binary values.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

ID Definition

40 Maximum size of local simple variables

41 Maximum size of local complex variables

42 Maximum depth of nested user-defined functions and subroutines

43 The size of stack for storing user functions’ simple variables

44 The size of stack for storing user functions’ complex variables

45 The size of the message argument queue length

51 0 to disable strings in event messages and 1 to enable

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

17

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

ID Definition

100

Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are:

0x0000 Disable

0x0001 Enable

0x80nn Enable VSP command mode if Signal Pin nn on module is HIGH

0xC0nn Enable VSP command mode if Signal Pin nn on module is LOW

0x81nn

Enable VSP command/bridge mode if Signal Pin nn on module is HIGH, command/bridge

mode is selected with nAutorun at startup. nAutorun LOW for command mode, HIGH for
bridge mode.

0xC1nn

Enable VSP command/bridge mode if Signal Pin nn on module is LOW, command/bridge

mode is selected with nAutorun at startup. nAutorun LOW for command mode, HIGH for
bridge mode.

ELSE Disable

101

In Virtual Serial Port Service, select either to use INDICATE or NOTIFY to send data to client.

0 Prefer Notify

ELSE Prefer Indicate

This is a preference and the actual value is forced by the property of the TX characteristic of the
service.

102

Advert interval in milliseconds when advertising for connections in interactive mode and AT Parse
mode.

Valid values: 20 to 10240 milliseconds

103

Advert timeout in milliseconds when advertising for connections in interactive mode and AT Parse
mode.

Valid values: 1 to 16383 seconds

104

Data transfer is managed in the Virtual Serial Port service manager.

When sending data using NOTIFIES, the underlying stack uses transmission buffers of which there is a
finite number. This specifies the number of transmissons to leave unused when sending a lot of data
and allows other services to send notifies without having to wait for them.
The total number of transmission buffers can be determined by calling SYSINFO(2014) or in interactive
mode submitting the command ATi 2014

105

When in interactive mode and connected for virtual serial port services, this is the minimum
connection interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms.

If a value of less than 8 is specified, then the minimum value of 7.5 is selected.

106

When in interactive mode and connected for virtual serial port services, this is the maximum
connection interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms.

Note: If a value of less the minimum specified in 105, then it is forced to the value in
105 plus 2 milliseconds.

107

When in interactive mode and connected for virtual serial port services, this is the connection
supervision timeout in milliseconds to be negotiated with the master.

Valid range: 0 to 32000.

Note: If the value is less than the value in 106, then a value double the one in 106 is used.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

18

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

ID Definition

108
When in interactive mode and connected for virtual serial port services, this is the slave latency to be
negotiated with the master. An adjusted value is used if this value times the value in 106 is greater
than the supervision timeout in 107

109

When in interactive mode and connected for virtual serial port services, this is the Tx power used for
adverts and connections. The main reason for setting a low value is to ensure that in production, if
smartBASIC applications are downloaded over the air, limited range allows many stations to be used to
program devices.

110

If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the
transmit ring buffer in the managed layer sitting above the service characteristic FIFO register.

Valid range: 32 to 256

111

If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the
receive ring buffer in the managed layer sitting above the service characteristic fifo register.

Valid range: 32 to 256

250 Deprecated, please refer to BtcSPPSetParams for alternative method.

251 Deprecated, please refer to BtcSPPSetParams for alternative method.

300 Deprecated, please refer to BtcSPPSetParams for alternative method.

301 Deprecated, please refer to BtcSPPSetParams for alternative method.

400

BT/Wi-Fi coexistence setting.

Valid values are:

0 Disabled

1 Unity3 (no BLE support)

2 Unity3e (BLE support)

401

Controls transaction priorities, bit encoded (0 = low priority, 1 = high priority):

Bit Type

0 Page

1 Page Scan

2 Inquiry

3 Inquiry Scan

4 Role switch

5 LMP transmission to master

6 LMP from master

7 Polling (Tpoll)

8 Start of sniff

9 Bulk ACL

10 Broadcast transmissions

11 Park

12 Band Scan

13 Condtional Scan

14 Radio Trim

402 Controls transaction priorities, bit encoded (0 = low priority, 1 = high priority):

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

19

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

ID Definition

Bit Type

0 Non-connectable Advertising

1 Discoverable Advertising

2 Connectable Undirected Advertising

3 Connectable Directed Advertising

4 Advertising - Scan Response

5 Passive Scanning

6 Active Scanning

7 Active Scanning - Scan Response

8 Initiator

9 Connection Establishment (Master)

10 Connection Establishment (Slave)

11 Anchor Point (Master)

12 Anchor Point (Slave)

13 Data (Master)

14 Data (Slave)

15 <Reserved>

403
Unity3 T1 timing

Valid values: 150 to 200 microseconds. Default – 150

404
Unity3 T2 timing

Valid values: 15 to 20 microseconds. Default – 17

405
Unity3 Active Lead timing

Valid values: 18 to 22 microseconds. Default – 20

406
Unity3 Status Lead timing
Valid values: 8 to 12 microseconds. Default – 10

2300

Running clock frequency in KHz.

Valid values are 4000 (4 MHz), 20000 (20 MHz), and 40000 (40 MHhz). Default – 40 MHhz.

Type AT I 2300 ? in UwTerminal and hit Enter to get the current clock frequency in Hz.

Note: When using the 4 MHz clock, the maximum supported baud rate is 115200.

2301

Analogue-to-digital converter configuration scaling.

Valid values:

0 VRef 3.3V, scale to BL600

1 VRef 1.8V, scale to BL600

2 VRef 3.3V, no scaling

2302

Configures the format of the RTC time and date output string

1 hh:mm:ss

2 dd/mm/yy

3 yy/mm/dd

4 hh:mm:ss dd/mm/yy

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

20

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

ID Definition

5 hh:mm:ss yy/mm/dd

6 dd/mm/yy hh:mm:ss

7 yy/mm/dd hh:mm:ss

AT+CFG is a core command.

Note: These values revert to factory default values if the flash file system is deleted using the
AT & F * interactive command.

AT+BTD *

COMMAND

Deletes the bonded device database from the flash.

AT+BTD*

Returns \n00\r

Arguments None

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

Example:

AT+BTD*

AT+BTD* is an extension command

AT+BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is
particularly useful when the virtual serial port is enabled while in interactive mode.

AT+BLX

Returns \n00\r

Arguments: None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

Example:

AT+BLX

AT+BLX is an extension command.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

21

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

AT&F

COMMAND

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if flash is successfully erased

Arguments

Integermask Integer corresponding to a bit mask or the * character

The mask is an additive integer mask with the following acceptable values:

1
Erases normal file system and system config keys
(see AT+CFG for examples of config keys)

0x40000 Erases the User config keys only

0x10000 Erase the BLE Bonding Manager

0x20000 Erases the Classic Bluetooth Bonding Manager

* Erases all data segments

Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory default state by
erasing all flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

AT&F 1 ‘delete the file system

AT&F 16 ‘delete the user config keys

AT&F * ‘delete all data segments

AT&F is a core command.

CORE LANGUAGE BUILT-IN ROUTINES

Core language built-in routines are present in every implementation of smartBASIC. These routines provide the
basic programming functionality. They are augmented with target-specific routines for different platforms which
are described in the extension manual for each target platform.

All the core functionality is described in the document smartBASIC Core Functionality. Additional information is
also available from our Laird Embedded Wireless Solutions Support Center at http://ews-support.lairdtech.com.

Some functions have small behavioral differences from the core functionality; these are listed below.

Information Routines

SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO(varId)

Returns INTEGER. Value of information corresponding to integer ID requested.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://www.lairdtech.com/brandworld/library/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf
http://ews-support.lairdtech.com/

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

22

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

varId

byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described below.

0 Device ID. Each platform type has a unique identifier.

3

Module firmware version number
Example:
X.Y.Z is returned as a 32-bit value made up as follows:
(X<<24) + (Y<<8) + (Z)

where Y is the build number and Z is the sub-build number

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32 bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist

1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size

1005 Is 1 for run-time only implementation, 3 for compiler included

1010 Module Type

2000

Reset Reason

 8 : Self-Reset due to Flash Erase

 9 : ATZ

 10 : Self-Reset due to smartBASIC app invoking function RESET()

2001 Cause of last reset

2002 Timer resolution in microseconds

2003 Number of timers available in a smartBASIC Application

2004 Tick timer resolution in microseconds

2005 LMP Version number for BT 4.0 spec

2006 LMP Sub Version number

2007 Chipset Company ID allocated by BT SIG

2008 Returns the current TX power setting (see also 2018)

2009 Number of devices in trusted device database

2010 Number of devices in trusted device database with IRK

2011 Number of devices in trusted device database with CSRK

2012 Max number of devices that can be stored in trusted device database

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

23

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

2013 Maximum length of a GATT Table attribute in this implementation

2014 Total number of transmission buffers for sending attribute NOTIFIES

2015 Number of transmission buffers for sending attribute NOTIFIES – free

2016

Radio activity of the baseband

 0 : no activity

 1 : advertising

 2 : connected

 3 : broadcasting and connected

2018 Returns the TX power while pairing in progress (see also 2008)

2021 Stack tide mark in percent. Values near 100 are not good.

2022 Stack size

2023 Initial Heap size

2040 Max number of devices that can be stored in trusted device database

2041 Number of devices in trusted device database

2042 Number of devices in the rolling device database

2043
Maximum number of devices that can be stored in the rolling device

Database

2100 Connect scan interval (ms)

2101 Connect scan window (ms)

2102 Connect slave latency (ms)

2105 Connect multi-link connection interval periodicity (ms)

2106 Minimum connection length (ms)

2107 Maximum connection length (ms)

2150 Scan interval (ms)

2151 Scan window (ms)

2152

Scan type

 0 – Passive

 1 – Active

2153 Minimum number of reports to store in cache

2300
Returns system clock frequency. Value should be one of 4MHz, 20MHz of

40MHz.

2301

Raw Adc Config

 0 – Scaled to match BL600 output

 2 – No scaling

2303

RTC time and date output format

 1 – hh:mm:ss

 2 – dd/mm/yy

 3 – yy/mm/dd

 4 – hh:mm:ss dd/mm/yy

 5 – hh:mm:ss yy/mm/dd

 6 – dd/mm/yy hh:mm:ss

 7 – yy/mm/dd hh:mm:ss

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

24

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example :: SysInfo.sb (See in Firmware Zip file)

 PRINT "\nSysInfo 601 = ";SYSINFO(601) // Flash File System: Total Space (Data Segment)

 PRINT "\nSysInfo 2300 = ";SYSINFO(2300) // Current system clock speed

 PRINT "\nSysInfo 1002 = ";SYSINFO(1002) // Minimum UART baud rate

Expected Output:

SYSINFO is a core language function.

SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varId argument.

SYSINFO$(varId)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions Local Stack Frame Underflow
 Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described below.

4

The Bluetooth address of the module.

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.

14

A random public address unique to this module. May be the same value as in 4 above unless an
IEEE Bluetooth address is set.

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.

Example :: SysInfo$.sb (See in Firmware Zip file)

 PRINT "\nSysInfo$(4) = ";SYSINFO$(4) // address of module

 PRINT "\nSysInfo$(14) = ";SYSINFO$(14) // public random address

 PRINT "\nSysInfo$(0) = ";SYSINFO$(0)

Expected Output:

SysInfo 601 = 49152

SysInfo 2300 = 40000000

SysInfo 1002 = 1200

SysInfo$(4) = \01\FA\84\D7H\D9\03

SysInfo$(14) = \01\FA\84\D7H\D9\03

SysInfo$(0) =

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

25

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

SYSINFO$ is a core language function.

UART Interface

UartOpen

FUNCTION

This function is used to open the main default UART peripheral using the parameters specified.

See core manual for further details.

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

stOptions

byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character is used to specify
further comms parameters as follows.

Character Offset:

0

DTE/DCE role request:

 T – DTE
 C – DCE

1

Parity:

 N – None
 O – Odd
 E – Even

2 Databits: 8

3 Stopbits: 1

4

Flow Control:

 N – None
 H – CTS/RTS hardware
 X – Xon/Xof (Not Available)

The following baud rates are supported: 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
230400, 250000, 460800, 921600, and 2000000 baud.

I2C – Two Wire Interface (TWI)

The BT900 can be only be configured as an I2C master if it is the only master on the bus and only 7-bit slave
addressing is supported.

BT900 supports three clock frequencies: 100000, 250000 and 400000. The values must be entered in this
format.

Note: I2C can only supported on modules that have been configured with a System Clock of 20 or 40MHz. It
is not supported in modules with a 4MHz System Clock.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

26

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

SPI Interface

The BT900 module can only be configured as a SPI master.

SpiOpen

FUNCTION

This function is used to open the main SPI peripheral using the parameters specified.

SPIOPEN (nMode, nClockHz, nCfgFlags, nHande)

Returns

INTEGER Indicates success of command:

0 Opened successfully

0x5200 Driver not found

0x5207 Driver already open

0x5225 Invalid clock frequency requested

0x521D Driver resource unavailable

0x522B Invalid

Exceptions
 Local Stack Frame Underflow
 Local Stack Frame Overflow

Arguments

nMode

byVal nMode AS INTEGER
This is the mode, as in phase and polarity of the clock line, that the interface shall operate at.
Valid values are 0 to 3 inclusive:

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

nClockHz
byVal nClockHz AS INTEGER
This is the clock frequency to use, and can be one of 125000, 250000, 500000, 1000000,
2000000, 4000000 or 8000000.

nCfgFlags

byVal nCfgFlags AS INTEGER
This is a bit mask used to configure the SPI interface. All unused bits are allocated as for future
use and MUST be set to 0. Used bits are as follows:

Bit Description

0 If set, then the least significant bit is clocked in/out first.

1-31 Unused and must be set to 0.

nHandle
byRef nHandle AS INTEGER
The handle for this interface is returned in this variable if it is successfully opened. This handle is
subsequently used to read/write and close the interface.

Related
Commands

SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

SPIOPEN is a core function.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

27

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Note: Firmware versions prior to 9.1.10.3 contained a bug relating to the nMode parameter. This parameter
had been implemented incorrectly. Entering a value of 1 would actually result in SPI Mode 0 and a
value of 0 would result in SPI Mode 2. This has now been corrected and from firmware version
9.1.10.3 onwards the nMode parameter has been implemeted correctly.

 Any smartBasic applications using this command on pre-9.1.10.3 firmware should be corrected
accordingly.

Input/Output Interface Routines

I/O and interface commands allow access to the physical interface pins and ports of the smartBASIC modules.
Most of these commands are applicable to the entire range of modules. However, some are dependent on the
actual I/O availability of each module.

There are 23 SIO (Special I/O) pins available on the BT900. All of these pins can be configured to provide
additional types of functionality. However, some of the pins have set functionality that should never be
changed. For example, sio0-sio3 are used to provide the Serial UART capability to a remote host.

The functionality that is supported for each pin is listed below. With the exception of the sio0 to sio3 and sio 14
to sio16, all of the pins boot up as digital inputs.

Note: All of the pins can be configured as digital inputs or outputs, therefore these are not listed in the table
below.

Table 1: SIO pin functionality

SIO Functionality

0 UART Rx, Wakeup pin 2, External interrupt

1 UART Tx

2 UartRts

3 UartCts, Wakeup pin 4, External interrupt

4 No extra functionality

5 Exernal interrupt

6 SpiMiso

7 SpiMosi

8 SpiCs, External interrupt

9 SpiClk

10 I2cData

11 I2cClock

12 Pwm/Freq

13 Pwm/Freq, External interrupt

14 No extra functionality

15 No extra functionality

16 No extra functionality

17 Pwm/Freq

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

28

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

SIO Functionality

18 No extra functionality

19 Vsp

20 Adc01, Wakeup pin 1, external interrupt

21 Adc00

22 Autorun, external interrupt

Notes: Where Autorun or Vsp functionality is required, then that pin can only be used for that function and
cannot be changed.

Pins that provide the External interrupt functionality are used for the GpioBindEvents and
GpioAssignEvents. With this firmware, Bind and Assign are handled identically. It is only the type of
returned event that is different.

Pwm option outputs a fully configurable waveform; Freq option outputs a 50:50 mark space ratio
waveform.

Events and Messages

EVGPIOCHANn N is from 0 to 3 where N is platform-dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-
generate is hardware-dependent.

Use GpioBindEvent() to generate these events. See example for GpioBindEvent()

EVDETECTCHANn N is from 0 to 3 where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-
generate is hardware dependent.

Use GpioAssignEvent() to generate these events.

GpioSetFunc

FUNCTION

This routine sets the function of the SIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special
I/O pin corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.

The nSubFunc argument defines the configuration of the requested function, for DIGITAL_IN this value is a bit
field, for DIGITAL_OUT this is a value.

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSigNum
byVal nSigNum AS INTEGER.
The signal number as stated in the pinout table of the module.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

29

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nFunction

byVal nFunction AS INTEGER.
Specifies the configuration of the SIO pin as follows:
1 = DIGITAL_IN

2 = DIGITAL_OUT

3 = ANALOG_IN (SIO 21 – Temperature Sensor and SIO20 – Trim Pot only)

nSubFunc

byVal nSubFunc INTEGER.
Configures the pin with the following bit field values:

If nFunction == DIGITAL_IN

 2 or 4 – Use pull-up resistor
 16 – Wake up when signal is low
 32 – Wake up when signal is high
 48 – Wake up when signal changes

If nFunction == DIGITAL_OUT

Values:

 0 = Initial output to LOW
 1 = Initial output to HIGH
 2 = Pwm output
 3 = Freq output

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example :: GpioSetFunc.sb

PRINT GpioSetFunc(15,1,2) //Digital In SIO 15, strong pull up resistor

PRINT GpioSetFunc(20,3,0) //Analog In SIO 20 (Trim Pot), default settings

PRINT GpioSetFunc(17,2,1) //SIO17 (LED0) digital out, initial output high

Expected Output:

GPIOSETFUNC is a Module function.

GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM
output using GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. We advise that
you call this once at the beginning of your application and do not change it again within the
application unless all PWM outputs are deconfigured and then re-enabled after this function is called.

The PWM output is generated using 16-bit hardware timers.

000

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

30

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

A PWM signal has a frequency and a duty cycle property, the frequency is set using this function and is defined
by the nMinFreqHz parameter. The maximum PWM frequency value is 5000000Hz (5 MHz) for modules where
the system clock has been set to 20 or 40 MHz and 1000000Hz (1 MHz) for modules configured with a System
Clock of 4MHz. The nMaxPeriodus parameter is purely historical and serves no real function in the BT900. It
should be set to the same value as the nMinFreqHz parameter.

The mark space ratio of the output waveform is controlled by the GpioWrite function.

The PWM output frequency is produced by dividing the System Clock Frequency, which can be obtained from AT
I 2300, by the nMinFreqHz value. The result of this calculation is loaded into a 16 bit hardware register and
represents the number of clock cycles that is required to obtain the the required output frequency. Take note of
this register value as it’s needed to verify if the required mark:space ratio is valid.

Note: If the calculation does not provide an integer result the register value obtained is rounded down, so
does not provide an accurate frequency for the PWM output. This is more noticeable at higher
frequencies.

The lowest PWM output frequency at the maximum system frequency of 40 MHz is approximately 611 Hz, i.e.
40 MHz / 65536.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

Note: On the BT900 only SIO 12, 13, and 17 may be used for PWM.

GPIOCONFIGPWM (nMinFreqHz, nMaxPeriodus)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nMinFreqHz
byRef nMinFreqHz AS INTEGER.
The nominal frequency of the waveform.

nMaxPeriodus
byVal nMaxPeriodus INTEGER.

Set to same value as nMinFreqHz.

Example :: pwm.sb

dim retval

dim i

dim nFreq

dim nResolution

dim res[5] as integer

FUNCTION HandlerTimer1()

 dim TmpVal

 i=i+1

 if i==5 then

 i=0

 endif

 TmpVal = (res[i]*100/nFreq)

 PRINT "\nTimer event! PWM changed to "; TmpVal; "% duty cycle."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

31

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 GpioWrite(13,res[i])

ENDFUNC 1

i=0

nFreq=2048

nResolution=2048

res[0]=nResolution/2

res[1]=nResolution/4

res[2]=nResolution/8

res[3]=0

res[4]=nResolution

ONEVENT EVTMR1 CALL HandlerTimer1

//Configure PWM

retval = GpioConfigPWM(nFreq,nResolution)

retval = GpioSetFunc(13,2,2)

//Write the first value to the PWM out

GpioWrite(13,res[i])

PRINT "\nTimer started. PWM on 50% duty cycle."

//start a 5000 millisecond (5 second) recurring timer

TimerStart(1,5000,1)

WAITEVENT

Expected Output:

GPIOCONFIGPWM is a Module function.

Timer started. PWM on 50% duty cycle.

Timer event! PWM changed to 25% duty cycle.

Timer event! PWM changed to 12% duty cycle.

Timer event! PWM changed to 0% duty cycle.

Timer event! PWM changed to 100% duty cycle.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

32

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

GpioRead

FUNCTION

This routine reads the value from a SIO pin.

The module datasheet contains a pinout table which mentions SIO (Special I/O) pins and the number designated
for that SIO pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns INTEGER, the value from the signal.

If the signal number is invalid, then it returns a value of 0.

For digital pins, the value is 0 or 1. For ADC pins it is a value in the range 0 to M where M is the
maximum value based on the bit resolution of the analogue to digital converter.

Arguments:

nSigNum
byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

Refer to the example for GpioBindEvent.

GPIOREAD is a Module function.

Note: The raw output, when in ADC mode, is controlled by config register 2301. The ADC pins in the BT900
are fed into a 12-bit converter. The reference voltage used for the conversion is 3.3V. The BL600 has a
10-bit converter with a reference voltage of 1.2V. To ensure that both modules return the same raw
value for the same input voltage the BT900 (by default) scales the raw output to match that of the
BL600. For example, if 1.2 volts is applied to the pin, 1023 is the raw output. In this mode config
register 2301 has a value of 0.

If config register 2301 is changed to 2, then the raw output is not scaled. Therefore, if 1.2V is applied
to the pin, then the raw output is 1489.

The equation to convert from raw value to voltage differs depending on the value stored in config
register 2301.

For the default case of 0 and to match the BL600 then use: Vin = ((Raw output*1.2)/1023)V

If the configuration register is set to 2 then use: Vin = ((Raw output*3.3)/4095)V

ADC Example:

//Example: adc.sb

//This example reads from the trim pot, for it to work, TrimPot on CON14 needs to be in the

ON position

#define GPIO_TRIM_POT 20

dim rc, adc

//Start timer to read trim pot

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

33

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

TimerStart(0,1000,1)

//Remove resistor

rc = GpioSetFunc(GPIO_TRIM_POT, 1, 2)

//Analogue in

rc = GpioSetFunc(GPIO_TRIM_POT, 3, 0)

FUNCTION HandlerTimer0()

 //Read the ADC

 adc = GpioRead(GPIO_TRIM_POT)

 PRINT "\nTrim Pot Reading: ";adc

ENDFUNC 1

OnEvent EVTMR0 call HandlerTimer0

WAITEVENT

Expected output:

GpioWrite

FUNCTION

This function writes a new value to the SIO pin. If the pin number is invalid, nothing happens.

If the SIO pin is configured as a PWM output then the nNewValue specifies a value in the range 0 to N where N is
the nMinFreqHz set in the GpioConfigPwm command. The write value controls the mark space ratio of the
output waveform. A value of 0 outputs a low, a value of nMinFreqHz outputs a high, and a value in varies the
mark space ratio. The higher the value, the longer the mark period.

For modules that have been configured with a System Clock of 20 or 40 MHz, if the SIO pin has been configured
as a FREQUENCY output then the nNewValue specifies the desired frequency in Hertz in the range 0 to 5000000.
Setting a value of 0 makes the output a constant low value. Setting a value greater than 5000000 causes an error
message to be sent.

For modules that have been configured with a System Clock of 4 MHz the nNewValue range is 0 to 1000000.

As with the GpioConfigPwm function the nNewValue is used to calculate a hardware register value. This value
must be less than the register value calculated from the GpioConfigPwm function that is used to set the PWM
output frequency. Again, care must be taken to avoid non integer results or the output waveform will not be
accurate.

Trim Pot Reading: 1943

Trim Pot Reading: 1943

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

34

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

As an indication if you divide the PWM output frequency by the value of the register calculated in the
GpioConfigPwm function above, then that result is the minimum nNewValue you can enter to get a mark:space
ratio. Other valid mark:space ratios are provided by integer multiples of this minimum value.

For example: With a System Frequency of 40 MHz and an output PWM frequency of 5 MHz then the register
value to provide the output frequency is 8. So the minimum value of nNewValue is 0.625 MHz and the remaining
obtainable values are 4.375, 3.75, 3.125, 2.5, 1.875 and 1.25 MHz. Any other nNewValue entered are rounded
down to one of these values.

GPIOWRITE (nSigNum, nNewValue)

Returns

Arguments:

nSigNum
byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

nNewValue

byVal nNewValue INTEGER.
The value to be written to the port.

If the pin is configured as digital, then 0 clears the pin and a non-zero value sets it.

If the pin is configured as a PWM then this value sets the duty cycle.

If the pin is configured as a FREQUENCY then this value sets the frequency.

Example:

dim rc, i1, i2

i2 = 1

i1 = 1

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 //else

 //print "\nOk: line ";ln

 endif

EndSub

rc=GpioSetFunc(17,2,1)

AssertRC(rc,16)

rc=GpioSetFunc(18,2,1)

AssertRC(rc,19)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

35

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

function HandlerTmr0()

 i1=!i1

 GpioWrite(18,i1)

 AssertRC(rc,30)

endfunc 1

function HandlerTmr1()

 i2=!i2

 GpioWrite(17,i2)

 AssertRC(rc,42)

endfunc 1

function HandlerUartRx()

endfunc 0

TimerStart(0,500,1)

TimerStart(1,1000,1)

onevent evuartrx call HandlerUartRx

onevent evtmr0 call HandlerTmr0

onevent evtmr1 call HandlerTmr1

print "\n\nPress any key to exit"

waitevent

print "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

36

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

GPIOWRITE is a Module function.

GpioBindEvent/GpioAssignEvent

FUNCTION

This routine binds an event to a level transition on a specified SIO line configured as a digital input so that
changes in the input line can invoke a handler in smartBASIC user code.

When this function is called on the BT900, the SIO pin specified by nSigNum is set up as a digital input in the
underlying firmware so GpioSetFunc() does not need to be called beforehand.

If this function is used in your smartBASIC application, we recommend that you unbind all bound events by
calling GpioUnbindEvent() at the end of the application. Likewise for all assigned events, GpioUnassignEvent
should be called.

Note: In the BT900 module an SIO pin can only be bound to one event at a time.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nEventNum
byVal nEventNum INTEGER.
The SIO event number (in the range of 0 - N) which results in the event EVGPIOCHANn being
thrown to the smartBASIC runtime engine.

nSigNum

byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module. On the BT900 this can only be SIO
0, 3, 5, 8, 13, 20 or 22.

Note: SIO0 and SIO3 can only be used as bind or assign events if they are not being used as
UART pins, i.e. that the UartClose() function has been called and the UART has not been
reopened.

Ensure the DIP switches on CON14 are set as follows:

 OFF ON

LED0 [1 -->]

LED1 [2 -->]

TempS [3 x]

TrimPot [4 x]

x = doesn't matter

Press any key to exit

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

37

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nPolarity

byVal nPolarity INTEGER.

States the transition as follows:

 0 - Low to high transition
 1 - High to low transition
 2 - Either a low to high or high to low transition

Example :: GpioBindEvent.sb

dim rc

function HandlerBtn0()

 dim i : i = GpioRead(13)

 '//if button 0 was pressed

 if i==0 then

 print "\nButton 0 Pressed"

 '//if button 0 was released

 elseif i==1 then

 print "\nButton 0 Released"

 endif

endfunc 1

function HandlerUartRx()

endfunc 0

rc= GpioBindEvent(0,13,2) //Bind event 0 to high or low transition on SIO13 (button 1)

if rc==0 then

 onevent evgpiochan0 call HandlerBtn0 //When event 0 happens, call Btn0Press

 print "\nSIO13 - Button 0 is bound to event 0. Press button 0"

else

 print "\nGpioBindEvent Err: ";integer.h'rc

endif

onevent evuartrx call HandlerUartRx

print "\n\nPress any key to exit"

waitevent

rc=GpioUnbindEvent(0)

if rc==0 then

 print "\n\nEvent 0 unbound\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

38

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

endif

Expected Output:

GPIOBINDEVENT is a Module function.

GpioUnbindEvent/GpioUnAssignEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().

GPIOUNBINDEVENT (nEventNum)

GPIOUNASSIGNEVENT (nEventNum)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEventNum
byVal nEventNum INTEGER.
The SIO event number (in the range of 0 - N) which is disabled so that it no longer generates run-
time events in smartBASIC.

See example for GpioBindEvent.

Miscellaneous Routines

This section describes all miscellaneous functions and subroutines.

ERASEFILESYSTEM

FUNCTION

This function is used to erase the flash file system which contains the application that invoked this function, if
and only if, the SIO19 input pin is held low.

Given that SIO19 is low, after erasing the file system, the module resets and reboots into command mode with
the virtual serial port service enabled; the module advertises for a few seconds. See the virtual serial port service
section for more details.

SIO13 - Button 0 is bound to event 0. Press button 0

Press any key to exit

Button 0 Pressed

Button 0 Released

Button 0 Pressed

Button 0 Released

Event 0 unbound

Exiting...

00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

39

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

This facility allows the current $autorun$ application to be replaced with a new one.

WARNING:
If this function is called from within $autorun$ and the SIO19 input is low, then it is erased and a fresh
download of the application is required which can be facilitated over the air.

ERASEFILESYSTEM (nArg)

Returns INTEGER Indicates success of command:

0 Successful erasure. The module reboots.

<>0 Failure.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nArg byVal nArg AS INTEGER

This is for future use and MUST always be set to 1. Any other value results in a failure.

Example:

 DIM rc

 rc = EraseFileSystem(1234)

 IF rc!=0 THEN

 PRINT "\nFailed to erase file system because incorrect parameter"

 ENDIF

 //Input SIO19 is low

 rc = EraseFileSystem(1)

 IF rc!=0 THEN

 PRINT "\nFailed to erase file system because SIO19 is low"

 ENDIF

Expected Output:

Failed to erase file system because incorrect parameter

Failed to erase file system because SIO19 is low

00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

40

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BTC EXTENSIONS BUILT-IN ROUTINES

Generic Access Profile Functions

This section describes routines related to the Generic Access Profile.

Events and Messages

EVINQRESP

This event is thrown when there is an BTC inquiry report waiting to be read. The message, which is passed to a
handler which should be registered in the smartBASIC application, contains respType, the type of inquiry
response received. It is one of the following values:

0 Standard

1 With RSSI

2 Extended (contains EIR data)

Example:

dim rc

dim adr$

adr$=""

//==

// This handler is called when there is an inquiry report waiting to be read

// Algorithm will prevent display of data from the same peer consecutively

//==

function HandlerInqResp(respType) as integer

 dim ad$,dta$,ndx,rsi,tag

 rc = BtcInquiryGetReport(ad$,dta$,ndx,rsi)

 //if Bluetooth address is different from the previous one

 if strcmp(adr$,ad$)!= 0 then

 print "\nBluetooth: "; StrHexize$(ad$)

 if respType > 0 then

 print " ";rsi

 if respType == 2 then

 print "\n EIR: "; StrHexize$(dta$)

 dim tg$

 while BtcGetEIRbyIndex(ndx,dta$,tag,ad$)==0

 //write tag value as hex to string tg$

 sprint #tg$,integer.h'tag

 //hexize eir tag data if not a shortened or complete local name

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

41

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 if tag < 0x08 || tag > 0x09 then

 ad$ = StrHexize$(ad$)

 else

 StrDeescape(ad$)

 endif

 //print the last 2 hex digits of the tag, and the data

 if strlen(ad$)!=0 then

 print "\n - Tag 0x" + RIGHT$(tg$,2) +": "; ad$

 endif

 ndx=ndx+1

 endwhile

 print "\n"

 endif

 endif

 endif

endfunc 1

function HandlerBtcInqTimOut() as integer

 print "\nScanning stopped via timeout"

endfunc 0

OnEvent EVINQRESP call HandlerInqResp

OnEvent EVBTC_INQUIRY_TIMEOUT call HandlerBtcInqTimOut

rc = BtcInquiryConfig(1,2) //extended inquiry mode

rc = BtcInquiryStart(10)

WaitEvent

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

42

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

EVBTC_INQUIRY_TIMEOUT

This event is thrown when an inquiry times out. When an inquiry times out this doesn’t necessarily mean that
there are no more responses waiting, so you can obtain the remaining responses after a timeout by calling
BtcInquiryGetReport().

See example for EvInqResp

BtcInquiryConfig

FUNCTION

This function sets the parameters for all subsequent BTC inquiries which are started using the function
BtcInquiryConfig().

Note: Limited inquiry is currently not supported and will be implemented in future releases of the
firmware.

BTCINQUIRYCONFIG (nConfigID,nValue)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConfigID

byVal nConfigID AS INTEGER.
This identifies the value to update as follows:

0 Inquiry Type (0 for General Inquiry, 1 for Limited Inquiry)

1 Inquiry Mode (0 for Standard, 1 for with RSSI, 2 for Extended)

2 Max number of inquiry responses to receive (Range is from 0-255)

Bluetooth: 0C8BFD515094 -57

 EIR: 0D094C4F4E444C31395458525931020A0A

 - Tag 0x09: LONDL19TXRY1

 - Tag 0x0A: 0A

Bluetooth: 94350AA99A3C -45

 EIR:

1409446176696420446176697327732050686F6E65170305110A110C111211151116111F112

D112F110012321101050107

 - Tag 0x09: David Davis's Phone

 - Tag 0x03: 05110A110C111211151116111F112D112F1100123211

Bluetooth: B00594F52133 -63

 EIR: 0D094C4F4E444C43564B51525931020A00

 - Tag 0x09: LONDLCVKQRY1

 - Tag 0x0A: 00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

43

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

3 Inquiry Tx Power (Range is from -70 to 20 dBm)

nValue
byVal nValue AS INTEGER.
The new value to set for the parameter identified by configID.

See example for EvInqResp.

BtcInquiryStart

FUNCTION

Start inquiries with the parameters set using the function BtcInquiryConfig().

BTCINQUIRYSTART (nTimeout)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nTimeout byVal nTimeout AS INTEGER.

This is how long in seconds the inquiry lasts. If the timer times out then the event EVBTC_INQUIRY_TIMEOUT is
thrown to the smartBASIC application.

See example for EvInqResp.

BtcInquiryCancel

FUNCTION

Cancel an ongoing inquiry.

BTCINQUIRYCANCEL()

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments: None

Example:

dim rc

rc=BtcInquiryStart(10)

if rc == 0 then

 print "\nInquiry Started"

else

 print "\nError: ";rc

endif

TimerStart(0,2000,0)

Function TimerExpr()

 rc=BtcInquiryCancel()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

44

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 if rc == 0 then

 print "\nInquiry Cancelled"

 else

 print "\nError: ";rc

 endif

EndFunc 0

OnEvent EvTmr0 call TimerExpr

waitevent

Expected Output:

BtcDiscoveryConfig

FUNCTION

When a Bluetooth device is discoverable, it listens for inquiries from other Bluetooth devices by performing an
inquiry scan. An Inquiry Window and Inquiry Interval are used to optimise power usage:

 Inquiry Interval – The time between inquiry scans.
 Inquiry Window – The duration fo the inquiry scan.

This function sets the parameters and the discoverablity type of this module. If the module is set for General
Discoverability, it is seen by devices doing a General Inquiry. If set for Limited Discoverabliity, the module is only
seen by devices doing a Limited Inquiry.

Note: Limited Discoverability is currently supported and will be implemented in future releases of the
firmware.

BTCDISCOVERYCONFIG (nConfigID,nValue)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

Inquiry Started

Inquiry Cancelled

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

45

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nConfigID

byVal nConfigID AS INTEGER.

This identifies the value to update as follows:

0

Discoverability type:

 0 = General (default)
 1 = Limited

1

Inquiry Scan Interval

 Units: Baseband slots (0.625 msec)
 Range: 11.25 msec (0x0012) to 2560 msec (0x1000)

Default: 640 ms (0x0400)

2

Inquiry Scan Window – Must be less than or equal to the Inquiry Scan interval

 Units: Baseband slots (0.625 msec)
 Range: 11.25 msec (0x0012) to 2560 msec (0x1000)

Default: 320 ms (0x0200)

 Note: For all other configID values, the function returns an error.

nValue
byVal nValue AS INTEGER.
The new value to set for the parameter identified by configID.

Examples:

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at line ";ln

 else

 print "\nDiscovery Parameter set: line ";ln

 endif

EndSub

dim rc

rc=BtcDiscoveryConfig(0,0) //general

AssertRC(rc,17)

rc=BtcDiscoveryConfig(1,0x320) //inquiry scan interval of 500ms (0x0320)

AssertRC(rc,19)

rc=BtcDiscoveryConfig(2,0x190) //inquiry scan interval of 250ms (0x0190)

AssertRC(rc,21)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

46

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BtcSetDiscoverable

FUNCTION

This function sets the module discoverable for the time specified time or not discoverable. It sets the module for
the discoverability type specified by BtcDiscoveryConfig().

BTCSETDISCOVERABLE (nEnable, nTimeout)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEnable

byVal nEnable AS INTEGER

0 – Not discoverable

1 – Discoverable

nTimeout

byVal nTimeout AS INTEGER

The length of time in seconds that the module is discoverable.

Default: 60 seconds. If nEnable is set to zero (0), this parameter is ignored.

Example:

dim rc, n$

n$ = "My BT900"

function HandlerDiscTimeout()

 print "\nNo longer discoverable"

endfunc 0

rc=BtcSetFriendlyName(n$)

'//Enable discoverability for 10 seconds

rc=BtcSetDiscoverable(1,10)

if rc==0 then

 print "\nDiscoverable for 10 seconds"

else

 print "\nFailed: ";integer.h'rc

endif

Discovery Parameter set: line 17

Discovery Parameter set: line 19

Discovery Parameter set: line 21

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

47

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

onevent evbtc_discov_timeout call HandlerDiscTimeout

waitevent

print "\nExiting..."

Expected Output:

BtcSetConnectable

FUNCTION

This function enables or disables connectivity. It must be enabled in order for incoming connections to work. It
must also be enabled if you are enabling pairability as well.

 BTCSETCONNECTABLE(nEnable)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEnable

byVal nEnable AS INTEGER

0 – Not connectable

1 – Connectable

Example:

dim rc

rc=BtcSetConnectable(1)

if rc==0 then

 print "\nModule is now connectable"

endif

See also example for BtcSppWrite().

Expected Output:

Discoverable for 10 seconds

No longer discoverable

Exiting...

Module is now connectable

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

48

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcSetPairable

FUNCTION

This function enables or disables pairability. If set pairable, you will receive a pairing request on outgoing and
incoming connections if a bond has not already been established with the device to which you are connecting.

Note: The BT900 has to also be set as connectable in order to receive incoming pairing requests.

BTCSETPAIRABLE(nEnable)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nEnable
byVal nEnable AS INTEGER
0 – Not pairable
1 – Pairable

Example:

dim rc

rc=BtcSetPairable(1)

if rc==0 then

 print "\nModule is now pairable"

endif

Expected Output:

See also example for EVBTC_PAIR_RESULT.

BtcInquiryGetReport

FUNCTION

When an inquiry is in progress (after having called BtcInquiryStart() for report), the information is cached in a
queue buffer and a EVINQRESP event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the
handler for the EVINQRESP event.

BTCINQUIRYGETREPORT (addr$, inqData$, nDiscarded, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

addr$
byREF periphAddr$ AS STRING
The address of the advertiser is returned in this string. It is a 6-byte string.

Module is now pairable

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

49

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

inqData$
byREF advData$ AS STRING

The data payload is returned in this string.

nDiscarded
byREF nDiscarded AS INTEGER

On return, this parameter is updated with the number of adverts that were discarded because
there was no space in the internal queue.

nRssi

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is not a value that is sent by the peripheral but rather a value that is calculated by the
receiver in this module.

See example for EvInqResp.

BtcInquiryGetReportFull

FUNCTION

This function is used by the smartBASIC application to extract the full inquiry report from the queue for further
processing in the handler for the EVINQRESP event.

BTCINQUIRYGETREPORTFULL(addr$, nPScanRepMode, nPScanPeriodMode, nPScanMode, nCOD, nClockOffset,
inqData$, nDiscarded, nRssi)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

addr$
byREF periphAddr$ AS STRING
The address of the advertiser is returned in this string. It is a 6-byte string.

nPScanRepMode
byREF nPScanRepMode AS INTEGER

Part of the supported Page Scan Modes that the remote device supports.

nPScanPeriodMode
byREF nPScanPeriodMode AS INTEGER

Current setting of this parameter.

nPScanMode
byREF nPScanMode AS INTEGER

The other part of the supported Page Scan Modes that the remote device supports.

nCOD
byREF nCOD AS INTEGER

Class of device of the remote device.

nClockOffset

byREF nClockOffset AS INTEGER

Bits 16 to 2 of the difference between the master and slave device clocks, mapped to bits 14
to 0 of this parameter (i.e., computed from (<clock_slave – clock_master> ShiftRight 2).

Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if the offset value is valid.

inqData$
byREF advData$ AS STRING

The data payload is returned in this string.

nDiscarded

byREF nDiscarded AS INTEGER

On return, this parameter is updated with the number of adverts that were discarded because
there was no space in the internal queue.

nRssi

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is not a value that is sent by the peripheral but rather a value that is calculated by
the receiver in this module.

See example for EvInqResp.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

50

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcGetClassOfDevice

FUNCTION

Get the class of device as seen by other devices.

BTCGETCLASSOFDEVICE(nClassOfDevice)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nClassOfDevice
byREF nClassOfDevice AS INTEGER
On return this integer contains the class of device in the baseband.

Example:

dim rc, class

rc= BtcGetClassOfDevice(class)

print "\n";integer.h' class

Expected Output:

BtcSetClassOfDevice

FUNCTION

Set the class of device for this module. This class is visible to other Bluetooth Classic devices doing an inquiry if
they discover the module.

BTCSETCLASSOFDEVICE(nClassOfDevice)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nClassOfDevice
byVAL name$ AS INTEGER
The new class of device to set. The value accepted masks the lower three bytes.

Example:

dim rc, class

class = 0xC0FFEE

rc= BtcSetClassOfDevice(class)

rc= BtcGetClassOfDevice(class)

print "\n “;integer.h' class

Expected Output:

00C0FFEE

00C0FFEE

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

51

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcGetEIRbyIndex

FUNCTION

This function is used to extract the nth EIR element from the STRING data$. If the last EIR element is malformed,
it is treated as non-existent.

BTCGETEIRBYINDEX (nIndex, data$, EIRtag, EIRval$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nIndex
byVAL nIndex AS INTEGER.
Extract the nth element from the advert report in data$. It is 0 based. Specifying a -ve or a value more
than the number of EIR elements results in an error

data$
byREF data$ AS STRING

On exit this contains the report containing concatenated EIR elements

EIRtag
byREF EIRtag AS INTEGER

On exit this contains the tag value

EIRval$
byREF EIRval$ AS STRING

On exit this contains the data from the nth EIR element if it exists.

Note: Only the data portion of the EIR element is returned. The Tag is seperately provided in the EIRtag argument
and the length of the data is strlen(EIRval$).

Example:

dim rc

dim adr$

adr$=""

//==

// This handler is called when there is an inquiry report waiting to be read

// Algorithm will prevent display of data from the same peer consecutively

//==

function HandlerInqResp(respType) as integer

 dim ad$,dta$,ndx,rsi,tag

 rc = BtcInquiryGetReport(ad$,dta$,ndx,rsi)

 //if Bluetooth address is different from the previous one

 if strcmp(adr$,ad$)!= 0 then

 print "\nBluetooth Address: "; StrHexize$(ad$)

 if respType > 0 then

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

52

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 print " ";rsi

 if respType == 2 then

 print "\n EIR: "; StrHexize$(dta$)

 dim tg$

 while BtcGetEIRbyIndex(ndx,dta$,tag,ad$)==0

 //write tag value as hex to string tg$

 sprint #tg$,integer.h'tag

 //hexize eir tag data if not a shortened or complete local name

 if tag < 0x08 || tag > 0x09 then

 ad$ = StrHexize$(ad$)

 else

 StrDeescape(ad$)

 endif

 //print the last 2 hex digits of the tag, and the data

 if strlen(ad$)!=0 then

 print "\n - Tag 0x" + RIGHT$(tg$,2) +": "; ad$

 endif

 ndx=ndx+1

 endwhile

 print "\n"

 endif

 endif

 endif

endfunc 1

function HandlerBtcInqTimOut() as integer

 print "\nScanning stopped via timeout"

endfunc 0

OnEvent EVINQRESP call HandlerInqResp

OnEvent EVBTC_INQUIRY_TIMEOUT call HandlerBtcInqTimOut

rc = BtcInquiryConfig(1,2) //extended inquiry mode

rc = BtcInquiryStart(10)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

53

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

WaitEvent

Expected Output:

BtcGetEIRbyTag

FUNCTION

This function is used to extract the first instance of an EIR element from the STRING data$ identified by the tag
EIRtag. Any malformed EIR elements are ignored.

BTCGETEIRBYTAG (data$, EIRtag, EIRval$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

data$
byREF data$ AS STRING
On exit this contains the report containing concatenated EIR elements

EIRtag

byREF EIRtag AS INTEGER

The tag to look for. Only the first instance can be extracted. If multiple instances are suspected, then
use BtcGetEIRbyIndex()

EIRval$
byREF EIRval$ AS STRING

On exit this contains the data from the nth EIR element if it exists.

Note : Only the data portion of the EIR element is returned. The tag is separately provided in the EIRtag argument and
the length of the data is strlen(EIRval$).

Bluetooth: 0C8BFD515094 -57

 EIR: 0D094C4F4E444C31395458525931020A0A

 - Tag 0x09: LONDL19TXRY1

 - Tag 0x0A: 0A

Bluetooth: 94350AA99A3C -45

 EIR:

1409446176696420446176697327732050686F6E65170305110A110C111211151116111F112D112F1100123211

01050107

 - Tag 0x09: David Davis's Phone

 - Tag 0x03: 05110A110C111211151116111F112D112F1100123211

Bluetooth: B00594F52133 -63

 EIR: 0D094C4F4E444C43564B51525931020A00

 - Tag 0x09: LONDLCVKQRY1

 - Tag 0x0A: 00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

54

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

dim rc

dim adr$

adr$=""

//==

// This handler is called when there is an inquiry report waiting to be read

// Algorithm will prevent display of data from the same peer consecutively

//==

function HandlerInqRpt(cType) as integer

 dim ad$,dta$,ndx,rsi,tag

 rc = BtcInquiryGetReport(ad$,dta$,ndx,rsi)

 while rc==0

 if strcmp(adr$,ad$)!= 0 then

 //address is not as before so display the data

 adr$=ad$

 print "\nINQ:";strhexize$(ad$);" ";rsi

 if cType == 2 then

 // If its extended print the raw EIR data, then the complete local name

 print "\n EIR RAW:";strhexize$(dta$)

 print "\n EIR:"

 tag = 0x09 //complete local name

 rc=BtcGetEIRbyTag(dta$,tag,ad$)

 print "Complete Local Name: ";ad$

 print "Hex: ";strhexize$(ad$)

 endif

 endif

 //get the next advert in the cache

 rc = BtcInquiryGetReport(ad$,dta$,ndx,rsi)

 endwhile

endfunc 1

function HandlerBtcInqTimOut() as integer

 print "\nScanning stopped via timeout"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

55

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

endfunc 0

OnEvent EVINQRESP call HandlerInqRpt

OnEvent EVBTC_INQUIRY_TIMEOUT call HandlerBtcInqTimOut

rc = BtcInquiryConfig(1,2) //Mode with Extended

rc = BtcInquiryStart(5)

WaitEvent

Expected Output:

BtcGetFriendlyName

FUNCTION

Get the friendly name of this device as seen by other devices.

BTCGETFRIENDLYNAME (name$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

name$
byREF name$ AS STRING
On return this string contains the device name

INQ:0016A4FEF009 -74

 EIR RAW:0A084C6169726420464546050301110012

 EIR:Complete Local Name: Hex:

INQ:0016A4093D92 -74

 EIR RAW:1409736D6172745A2D303031364134303933443932

 EIR:Complete Local Name: smartZ-0016A4093D92Hex:

736D6172745A2D303031364134303933443932

INQ:0016A4093A89 -61

 EIR RAW:1409736D6172745A2D303031364134303933413839

 EIR:Complete Local Name: smartZ-0016A4093A89Hex:

736D6172745A2D303031364134303933413839

INQ:C4D98776AE3E -65

 EIR RAW:0E094C4F4E444C4851535656575A31020A04

 EIR:Complete Local Name: LONDLHQSVVWZ1Hex

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

56

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

dim rc, name$

rc=BtcGetFriendlyName(name$)

print "\n"; name$

Expected Output:

BtcGetRemoteFriendlyName

FUNCTION

Function to recall the address and friendly name of the result of a query signified by the event,
EVBTC_REMOTENAME_RECEIVED.

BTCGETREMOTEFRIENDLYNAME(address$, name$, nStatus)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

address$
byREF address$ AS STRING
Address of the remote device that the refiendly name relates to. Returned from the query.

name$
byREF name$ AS STRING
Friendly name of the remote device, returned from the query.

nStatus
byREF nStatus AS INTEGER
Status code of the query, the name string is only valid on a success status of 0.

BtcQueryRemoteFriendlyName

FUNCTION

Query the friendly name from a remote device specified in the address.

BTCQUERYREMOTEFRIENDLYNAME(address$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

address$
byVAL address$ AS STRING
Address of the remote device.

BtcSetFriendlyName

FUNCTION

Set the friendly name for this module. This name is visible to other Bluetooth Classic devices doing an extended
inquiry if they discover the module.

BTCSETFRIENDLYNAME (name$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Laird BT900

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

57

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Arguments:

name$
byREF name$ AS STRING

The new name to set. The maximum allowed length is 31 characters.

Example:

dim rc, name$

name$ = "My BT900"

rc=BtcSetFriendlyName(name$)

rc=BtcGetFriendlyName(name$)

print "\n"; name$

Expected Output:

BtcSniffEnable

FUNCTION

This function initiates sniff negotiations with a remote device. There must be an open connection with the
device specified. The values taken in this function are in the number of baseband slots (0.625ms).

BTCSNIFFENABLE(strBDAddr$, attempt, timeout, minPeriod, maxPeriod)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strBDAddr$
byREF strBDAddr$ AS STRING
This sets the address of the remote device for which sniff should be negotiated.

attempt
byVAL attempt AS INTEGER

The amount of time for each sniff attempt.

timeout
byVAL timeout AS INTEGER

The amount of time for a sniff timeout.

minPeriod
byVAL minPeriod AS INTEGER

Minimum time between each sniff period.

maxPeriod
byVAL maxPeriod AS INTEGER

Maximum time between each sniff period.

Example:

dim rc, i

'//BT address of device to connect to. You will have to change this

dim mac$

mac$ = "\00\16\A4\09\3A\BF"

My BT900

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

58

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//Array with handles for spp connections

dim hSpp

#define LINKMODE_ACTIVE (0)

#define LINKMODE_SNIFF (2)

//Handler function called when sniff mode has been enabled

function HandlerSniff(nStatus, nMode) as integer

 dim bdaddr$, link_mode, interval

 if((nStatus==0) && (nMode == LINKMODE_SNIFF))then

 // Successful mode change - Query the link

 rc = BtcQuerySniffChange(bdaddr$, link_mode, interval)

 print "\nSniff mode enabled: "

 print strhexize$(bdaddr$); " Interval "; interval

 endif

endfunc 0

//Handler function called when SPP is connected

function HandlerSppConn(portHndl, result) as integer

 hSpp = portHndl

 print "\n --- Connect : ",hSpp, StrHexize$(mac$)

 print "\nResult: ",integer.h' result

endfunc 0

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

//Make spp connection

rc=BtcSppConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

onevent EvSppConn call HandlerSppConn

waitevent

//Enable sniff parameters with the active Bluetooth link

//Values are defined in timeslots

print "\nEnabling sniff mode with ";StrHexize$(mac$)

rc = BtcSniffEnable(mac$, 80, 128, 544, 1600)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

59

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//Wait for a confirmation from the remote device that parameters were successfully negotiated

onevent EVBTC_SNIFF_CHANGE call HandlerSniff

waitevent

Expected Output:

BtcSniffDisable

FUNCTION

This function disables sniff mode with a remote device. There must be an open connection with the device
specified.

BTCSNIFFDISABLE(strBDAddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strBDAddr$
byREF strBDAddr$ AS STRING
Bluetooth address of the device with which to disable sniff mode.

Example:

dim rc, i

'//BT address of device to connect to. You will have to change this

dim mac$

mac$ = "\00\16\A4\09\3A\BF"

//Array with handles for spp connections

dim hSpp

#define LINKMODE_ACTIVE (0)

#define LINKMODE_SNIFF (2)

//Handler function when the link mode is changed

function HandlerSniff(nStatus, nMode) as integer

 dim bdaddr$, link_mode, interval

Connecting to device 0016A4093ABF

 --- Connect : 130049 0016A4093ABF

Result: 00000000

Enabling sniff mode with 0016A4093ABF

Sniff mode enabled: 0016A4093ABF Interval 1600

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

60

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 if(nStatus==0) then

 // Successful mode change - Query the link

 rc = BtcQuerySniffChange(bdaddr$, link_mode, interval)

 if(nMode == LINKMODE_SNIFF) then

 print "\nSniff mode enabled: "

 print strhexize$(bdaddr$); " Interval "; interval

 elseif(nMode == LINKMODE_ACTIVE) then

 print "\nSniff mode disabled: "

 print strhexize$(bdaddr$);

 endif

 endif

endfunc 0

//Handler function called when SPP is connected

function HandlerSppConn(portHndl, result) as integer

 hSpp = portHndl

 print "\n --- Connect : ",hSpp, StrHexize$(mac$)

 print "\nResult: ",integer.h' result

endfunc 0

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

//Make spp connection

rc=BtcSppConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

onevent EvSppConn call HandlerSppConn

waitevent

//Enable sniff parameters with the active Bluetooth link

//Values are defined in timeslots

print "\nEnabling sniff mode with ";StrHexize$(mac$)

rc = BtcSniffEnable(mac$, 80, 128, 544, 1600)

//Wait for a confirmation from the remote device that parameters were successfully negotiated

onevent EVBTC_SNIFF_CHANGE call HandlerSniff

waitevent

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

61

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//Disable sniff mode

rc = BtcSniffDisable(mac$)

//Wait for a confirmation from the remote device has disable sniff mode

Waitevent

Expected Output:

BtcQuerySniffSubrating

FUNCTION

This function initiates sniff subrate negotiations with a remote device. There must be an active connection with
the device specified.

BTCQUERYSNIFFSUBRATING(strBDAddr$, maxTxLatency, maxRxLatency, minRemoteTimeout,
minLocalTimeout)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strBDAddr$
byREF strBDAddr$ AS STRING
Returns the address of the last device to have negotiated sniff subrating.

maxTxLatency
byREF maxTxLatency AS INTEGER

Returns the maximum transmit latency.

maxRxLatency
byREF maxRxLatency AS INTEGER

Returns the maximum receive latency.

minRemoteTimeout
byREF minRemoteTimeout AS INTEGER

Returns the minimum remote timeout.

minLocalTimeout
byREF minLocalTimeout AS INTEGER

Returns the minimum local timeout.

Example:

dim rc, i

'//BT address of device to connect to. You will have to change this

dim mac$

Connecting to device 0016A4093ABF

 --- Connect : 130049 0016A4093ABF

Result: 00000000

Enabling sniff mode with 0016A4093ABF

Sniff mode enabled: 0016A4093ABF Interval 1600

Sniff mode disabled: 0016A4093ABF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

62

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

mac$ = "\00\16\A4\09\3A\BF"

//Array with handles for spp connections

dim hSpp

#define LINKMODE_ACTIVE (0)

#define LINKMODE_SNIFF (2)

//Handler function called when the link mode is changed

function HandlerSniff(nStatus, nMode) as integer

 dim bdaddr$, link_mode, interval

 if(nStatus==0) then

 // Successful mode change - Query the link

 rc = BtcQuerySniffChange(bdaddr$, link_mode, interval)

 if(nMode == LINKMODE_SNIFF) then

 print "\nSniff mode enabled: "

 print strhexize$(bdaddr$); " Interval "; interval

 elseif(nMode == LINKMODE_ACTIVE) then

 print "\nSniff mode disabled: "

 print strhexize$(bdaddr$);

 endif

 endif

endfunc 0

//Handler function called when sniff subrating parameters are changed

function HandlerSubrate(status)

 dim bdaddr$, bdaddrhex$

 dim maxTxLatency, maxRxLatency, minRemoteTimeout, minLocalTimeout

 dim rc

 // Successful Sniff subrate mode change - Query the link

 rc = BtcQuerySniffSubrating(bdaddr$, maxTxLatency, maxRxLatency, minRemoteTimeout,

minLocalTimeout)

 //If the address is zero then subrating has been disabled due to a closed connection

 bdaddrhex$ = StrHexize$(bdaddr$)

 if(strcmp(bdaddrhex$, "000000000000") == 0) then

 exitfunc 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

63

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 else

 print "\nSubrating changed: "; StrHexize$(bdaddr$); " - "

 print maxTxLatency; " "; maxRxLatency; " "; minRemoteTimeout; " "; minLocalTimeout

 endif

endfunc 0

//Handler function called when SPP is connected

function HandlerSppConn(portHndl, result) as integer

 hSpp = portHndl

 print "\n --- Connect : ",hSpp, StrHexize$(mac$)

 print "\nResult: ",integer.h' result

endfunc 0

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

//Make spp connection

rc=BtcSppConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

onevent EvSppConn call HandlerSppConn

waitevent

//Enable sniff parameters with the active Bluetooth link

//Values are defined in timeslots

print "\nEnabling sniff mode with ";StrHexize$(mac$)

rc = BtcSniffEnable(mac$, 80, 128, 544, 1600)

//Wait for a confirmation from the remote device that parameters were successfully negotiated

onevent EVBTC_SNIFF_CHANGE call HandlerSniff

waitevent

//Enable sniff subrating parameters

rc = BtcSniffSubratingEnable(mac$, 5000, 2000, 2000)

//Wait for a confirmation from the remote device that parameters were successfully negotiated

onevent EVBTC_SNIFF_SUBRATING call HandlerSubrate

waitevent

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

64

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BtcQueryModeChange

FUNCTION

This function requests the address of the last device to have changed mode of operation, which can be sniff,
park, hold or active. The function also returns the interval negotiated if applicable. This is called after a
EVBTC_MODE_CHANGE event.

BTCQUERYMODECHANGE(strBDAddr$, mode, interval)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strBDAddr$
byREF strBDAddr$ AS STRING
Returns the address of the last device to change mode.

mode
byREF mode AS INTEGER

Returns the mode entered by the device returned in the address.

interval
byREF interval AS INTEGER

Returns the interval negotiated by the device returned in the address.

Example:

dim rc, i

'//BT address of device to connect to. You will have to change this

dim mac$

mac$ = "\00\16\A4\09\3A\BF"

//Array with handles for spp connections

dim hSpp

#define LINKMODE_ACTIVE (0)

#define LINKMODE_SNIFF (2)

//Handler function called when the link mode is changed

Connecting to device 0016A4093ABF

 --- Connect : 130049 0016A4093ABF

Result: 00000000

Enabling sniff mode with 0016A4093ABF

Sniff mode enabled: 0016A4093ABF Interval 1600

Subrating changed: 0016A4093ABF - 4800 1600 2000 2000

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

65

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

function HandlerSniff(nStatus, nMode) as integer

 dim bdaddr$, link_mode, interval

 if(nStatus==0) then

 // Successful mode change - Query the link

 rc = BtcQuerySniffChange(bdaddr$, link_mode, interval)

 if(nMode == LINKMODE_SNIFF) then

 print "\nSniff mode enabled: "

 print strhexize$(bdaddr$); " Interval "; interval

 elseif(nMode == LINKMODE_ACTIVE) then

 print "\nSniff mode disabled: "

 print strhexize$(bdaddr$);

 endif

 endif

endfunc 0

//Handler function called when SPP is connected

function HandlerSppConn(portHndl, result) as integer

 hSpp = portHndl

 print "\n --- Connect : ",hSpp, StrHexize$(mac$)

 print "\nResult: ",integer.h' result

endfunc 0

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

//Make spp connection

rc=BtcSppConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

onevent EvSppConn call HandlerSppConn

waitevent

//Enable sniff parameters with the active Bluetooth link

//Values are defined in timeslots

print "\nEnabling sniff mode with ";StrHexize$(mac$)

rc = BtcSniffEnable(mac$, 80, 128, 544, 1600)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

66

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//Wait for a confirmation from the remote device that parameters were successfully negotiated

onevent EVBTC_SNIFF_CHANGE call HandlerSniff

waitevent

Expected Output:

BtcSniffSubratingEnable

FUNCTION

This function initiates sniff subrate negotiations with a remote device. There must be an active connection with
the device specified. The values taken in this function are in the number of baseband slots (0.625ms).

BTCSNIFFSUBRATINGENABLE(strBDAddr$, maxLatency, minRemoteTimeout, minLocalTimeout)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strBDAddr$
byREF strBDAddr$ AS STRING
This sets the address of the remote device for which sniff subrating should be
negotiated.

maxLatency
byVAL maxLatency AS INTEGER

Sets the maximum sniff subrate that the remote device may use.

minRemoteTimeout
byVAL minRemoteTimeout AS INTEGER

Sets the minimum base sniff subrate timeout that the remote device may use.

minLocalTimeout
byVAL minLocalTimeout AS INTEGER

Sets the minimum base sniff subrate timeout that the local device may use.

Example:

dim rc, i

'//BT address of device to connect to. You will have to change this

dim mac$

mac$ = "\00\16\A4\09\3A\BF"

//Array with handles for spp connections

dim hSpp

Connecting to device 0016A4093ABF

 --- Connect : 130049 0016A4093ABF

Result: 00000000

Enabling sniff mode with 0016A4093ABF

Sniff mode enabled: 0016A4093ABF Interval 1600

Sniff mode disabled: 0016A4093ABF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

67

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

#define LINKMODE_ACTIVE (0)

#define LINKMODE_SNIFF (2)

//Handler function called when the link mode is changed

function HandlerSniff(nStatus, nMode) as integer

 dim bdaddr$, link_mode, interval

 if(nStatus==0) then

 // Successful mode change - Query the link

 rc = BtcQuerySniffChange(bdaddr$, link_mode, interval)

 if(nMode == LINKMODE_SNIFF) then

 print "\nSniff mode enabled: "

 print strhexize$(bdaddr$); " Interval "; interval

 elseif(nMode == LINKMODE_ACTIVE) then

 print "\nSniff mode disabled: "

 print strhexize$(bdaddr$);

 endif

 endif

endfunc 0

//Handler function called when sniff subrating parameters are changed

function HandlerSubrate(status)

 dim bdaddr$

 dim maxTxLatency, maxRxLatency, minRemoteTimeout, minLocalTimeout

 dim rc

 // Successful Sniff subrate mode change - Query the link

 rc = BtcQuerySniffSubrating(bdaddr$, maxTxLatency, maxRxLatency, minRemoteTimeout,

minLocalTimeout)

 print "\nSubrating changed: "; StrHexize$(bdaddr$); " - "

 print maxTxLatency; " "; maxRxLatency; " "; minRemoteTimeout; " "; minLocalTimeout

endfunc 0

//Handler function called when SPP is connected

function HandlerSppConn(portHndl, result) as integer

 hSpp = portHndl

 print "\n --- Connect : ",hSpp, StrHexize$(mac$)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

68

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 print "\nResult: ",integer.h' result

endfunc 0

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

//Make spp connection

rc=BtcSppConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

onevent EvSppConn call HandlerSppConn

waitevent

//Enable sniff parameters with the active Bluetooth link

//Values are defined in timeslots

print "\nEnabling sniff mode with ";StrHexize$(mac$)

rc = BtcSniffEnable(mac$, 80, 128, 544, 1600)

//Wait for a confirmation from the remote device that parameters were successfully negotiated

onevent EVBTC_SNIFF_CHANGE call HandlerSniff

waitevent

//Enable sniff subrating parameters

rc = BtcSniffSubratingEnable(mac$, 5000, 2000, 2000)

//Wait for a confirmation from the remote device that parameters were successfully negotiated

onevent EVBTC_SNIFF_SUBRATING call HandlerSubrate

waitevent

Expected Output:

Connecting to device 0016A4093ABF

--- Connect : 130049 0016A4093ABF

Result: 00000000

Enabling sniff mode with 0016A4093ABF

Sniff mode enabled: 0016A4093ABF Interval 1600

Subrating changed: 0016A4093ABF - 4800 1600 2000 2000

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

69

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Human Interface Device

Events and Messages

EVHIDCONN

This event is thrown when a new HID connection has been established or an error has occured. The message is
passed to a handler, which should be registered in the smartBASIC application, and contains nHandle (the
handle of the connection) and result (a result code). nHandle is only valid on a successful result code (0).

Possible errors are:

HID_CONNECTION_TIMEOUT 0x01

HID_CONNECTION_REFUSED 0x02

HID_UNKNOWN_ERROR 0x03

Example:

dim rc

'//Dummy BT andress

dim mac$

mac$ = "\00\11\22\33\44\55"

\

//==

// Called after a connection attempt

//==

function HandlerHIDConn(portHndl, result) as integer

 if result == 0 then

 print "\n-- Connection Successful"

 elseif result == 1 then

 print "\n-- Connection Timeout"

 elseif result == 2 then

 print "\n-- Connection Refused"

 else

 print "\n-- Unknown Error"

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

ONEVENT EvHIDConn CALL HandlerHIDConn

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

70

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

'// We must open HID device or HID host before initiating connection

rc = BtcHIDHostOpen()

'//make hid connection

rc=BtcHIDConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

waitevent

Expected Output:

EVHIDDISCON

This event is thrown when an HID disconnection occurs. The message contains nHandle, the handle of the
connection.

Example:

dim rc

'//BT address of device to connect to. You will have to change this

dim mac$

mac$ = "\00\16\A4\09\3A\64"

function HandlerHIDConn(portHndl, result) as integer

 print "\n --- Connect : ";integer.h' result

 // Disconnect immediately for the purpose of this demo

 rc = BtcHIDDisconnect(portHndl)

 if rc==0 then

 print "\nDisconnecting ..."

 else

 print "\nError:", integer.h'rc

 endif

endfunc 1

function HandlerHidDiscon(portHndl) as integer

Connecting to device 001122334455

-- Connection Timeout

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

71

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 print "\n --- Disconnected"

endfunc 1

//**

// Equivalent to main() in C

//**

ONEVENT EvHidConn CALL HandlerHidConn

OnEvent EvHidDiscon call HandlerHidDiscon

'// We must open HID device or HID host before initiating connection

rc = BtcHidHostOpen()

'//make hid connection

rc=BtcHIDConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

waitevent

Expected Output:

EVHIDCONTROL

This event is thrown when the local HID Host or Device receives a Control event. The message contains nHandle,
the handle of the connection and nControl, the event received out of the following:

HID_CONTROL_NOP 0x00

HID_CONTROL_HARDRESET 0x01

HID_CONTROL_SOFTRESET 0x02

HID_CONTROL_SUSPEND 0x03

HID_CONTROL_EXITSUSPEND 0x04

HID_CONTROL_VCABLEUNPLUG 0x05

On receiving a HID_CONTROL_VCABLEUNPLUG control event, the connection is automatically disconnected.

EVHIDTXEMPTY

This event is generated when the last report has been sent to the baseband from a call to BtcHIDWrite() with the
specified nHandle, use this event to trigger sending more reports.

Connecting to device 0016A4093A64

 --- Connect : 00000000

Disconnecting ...

 --- Disconnected

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

72

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVBTC_HID_DATA_RECEIVED

This event is thrown when data is received via the Human Interface Device. Usage is as shown in the example
given for BtcHIDRead().

Example :: BtcHIDWrite.sb

dim rc

function HandlerHIDConn(portHndl, result) as integer

 dim s$

 print "\n --- Connect : ";integer.h' result

endfunc 1

function HandlerHidData() as integer

 dim hPort, report$

 '//read and print out a report

 rc = BtcHIDRead(hPort, report$)

 print"\nHandle: ";hPort; " Data: ";StrHexize$(report$)

endfunc 1

ONEVENT EvHidConn CALL HandlerHidConn

ONEVENT EvBtc_HID_data_received CALL HandlerHidData

'// We must open HID device or HID host before initiating connection

rc = BtcHidHostOpen()

'// Set device to be connectable

rc = BtcSetConnectable(1)

print "\nWaiting for a HID device to connect and write to us"

waitevent

Expected Output:

Waiting for a HID device to connect and write to us

 --- Connect : 00000000

Handle: 130050 Data: 0000040000000000

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

73

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcHIDDeviceOpen

FUNCTION

Open a local HID device, this function also registers the SDP records with default settings tunable with
BtcHIDConfig and the descriptor provided.

Note: A descriptor file must exist in the BT900 module before attempting to call this function, otherwise it
fails with error code 0x1806: FSA_OPEN_FAIL

BTCHIDDEVICEOPEN (descriptor$, nFeatures, nSubclass, name$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments

descriptor$
byRef descriptor$ AS STRING
The HID report descriptor string that specifies how data is interpreted

nFeatures

byVal nFeatures AS INTEGER
The device features flags that are entered into the SDP table. This value is a bit field:

0 HID_VIRTUAL_CABLE_BIT

1 HID_RECONNECT_INITIATE_BIT

2 HID_SDP_DISABLE_BIT

3 HID_BATTERY_POWER_BIT

4 HID_REMOTE_WAKE_BIT

5 HID_NORMALLY_CONNECTABLE_BIT

6 HID_BOOT_DEVICE_BIT

nSubclass
byVal nSubclass AS INTEGER
The device subclass that is entered into the SDP, if the device is not a composite device this value
should be the last 8 bits of the Class of Device.

nVersion
byVal nVersion AS INTEGER
The device release number which is included in the HID SDP record.

name$
byRef name$ AS STRING
The name of the service to be entered into the SDP table.

Example :: BtcHIDDeviceOpen.sb

dim rc, devName$

// Device settings

#define DEVICE_VID_SRC 0x2

#define DEVICE_VID 0x0077

#define DEVICE_PID 0x1234

#define DEVICE_VERSION 0x1

// Device class and subclass

#define DEVICE_CLASS_OF_DEVICE 0x2540

#define DEVICE_SUBCLASS 0x40

// HID descriptor

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

74

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

#define DEVICE_DESCRIPTOR

"\05\01\09\06\A1\01\05\07\19\E0\29\E7\15\00\25\01\75\01\95\08\81\02\95\01\75\08\81\03\95\05\7

5\01\05\08\19\01\29\05\91\02\95\01\75\03\91\03\95\06\75\08\15\00\25\65\05\07\19\00\29\65\81\0

0\C0"

// Bit field for device flags

#define HID_VIRTUAL_CABLE_BIT (0x00000001)

#define HID_RECONNECT_INITIATE_BIT (0x00000002)

#define HID_SDP_DISABLE_BIT (0x00000004)

#define HID_BATTERY_POWER_BIT (0x00000008)

#define HID_REMOTE_WAKE_BIT (0x00000010)

#define HID_NORMALLY_CONNECTABLE_BIT (0x00000020)

#define HID_BOOT_DEVICE_BIT (0x00000040)

devName$ = "BT900 Keyboard"

rc = BtcHidDeviceOpen(DEVICE_DESCRIPTOR, HID_NORMALLY_CONNECTABLE_BIT |

HID_BATTERY_POWER_BIT, DEVICE_SUBCLASS, DEVICE_VERSION, devName$)

if rc == 0 then

 print "\nHID Device Opened"

else

 print "\nError: ";rc

endif

rc = BtcHidClose()

Expected Output:

BtcHIDHostOpen

FUNCTION

Opens a local HID Host. This enables accepting connections from devices or making connections to devices.

BTCHIDHOSTOPEN()

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments: None

Examples:

dim rc

HID Device Opened

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

75

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

rc = BtcHIDHostOpen()

if rc == 0 then

 print "\nBtc HID Host opened"

else

 print "\nError: ";rc

endif

rc=BtcHidClose()

Expected Output:

BtcHIDClose

FUNCTION

Closes the local HID Host or HID Device, this function disconnects all existing connections and flushes any
reports with a read pending.

BTCHIDCLOSE()

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments: None

BTCHIDCLOSE is a built-in function.

BtcHIDConnect

FUNCTION

Connects to a device or host at the specified Bluetooth address. The type of connection depends on the local
mode, if a local Host is opened the connect command connects to a remote Device.

BTCHIDCONNECT(bdaddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

bdaddr$
byRef bdaddr$ AS STRING
The Bluetooth address of the remote device or host to connect too.

Example:

dim rc

'//BT address of device to connect to. You will have to change this

Btc HID Host opened

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

76

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

dim mac$

mac$ = "\00\16\A4\09\3A\64"

//==

// Called after a connection attempt

//==

function HandlerHIDConn(portHndl, result) as integer

 print "\n --- Connect : ";integer.h' result

endfunc 1

//**

// Equivalent to main() in C

//**

ONEVENT EvHIDConn CALL HandlerHidConn

'// We must open HID device or HID host before initiating connection

rc = BtcHIDHostOpen()

'//make hid connection

rc=BtcHIDConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

waitevent

Expected Output:

BtcHIDDisconnect

FUNCTION

Request a disconnect from a remote HID Host or Device. If there are reports waiting to be read, the disconnect
event is not thrown until the queue is empty, despite the host or device being disconnected.

BTCHIDDISCONNECT(nHandle)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

Connecting to device 0016A4093A64

 --- Connect : 00000000

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

77

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nHandle
BYVAL nHandle AS INTEGER
The handle of the connection to be dropped.

Examples:

dim rc

'//BT address of device to connect to. You will have to change this

dim mac$

mac$ = "\00\16\A4\09\3A\64"

//==

// Called after a connection attempt

//==

function HandlerHIDConn(portHndl, result) as integer

 print "\n --- Connect : ";integer.h' result

 // Disconnect immediately for the purpose of this demo

 rc = BtcHIDDisconnect(portHndl)

 if rc==0 then

 print "\n\nDisconnecting ..."

 else

 print "\nError:", integer.h'rc

 endif

endfunc 1

//==

// Called after a disconnection attempt

//==

function HandlerHidDiscon(portHndl) as integer

 print "\n --- Disconnected"

endfunc 1

//**

// Equivalent to main() in C

//**

ONEVENT EvHidConn CALL HandlerHidConn

OnEvent EvHidDiscon call HandlerHidDiscon

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

78

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

'// We must open HID device or HID host before initiating connection

rc = BtcHidHostOpen()

'//make hid connection

rc=BtcHIDConnect(mac$)

print "\nConnecting to device ";StrHexize$(mac$)

waitevent

Expected Output:

BtcHIDRead

FUNCTION

A function to read queued reports indicated by the reception of EVBTC_HID_DATA_RECEIVED. This function
returns the handle of the device or host the report was received from and the report itself.

BTCHIDREAD(nConnHandle , nReportHandle, nDropped)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
BYREF nConnHandle AS INTEGER
The handle of the connection that the report has been read from.

nReportHandle
BYREF nReportHandle AS INTEGER
The report handle that is used to extract the report

nDropped
BYREF nDropped AS INTEGER

The number of reports that were dropped

Example :: BtcHIDWrite.sb

dim rc

//==

// Called after a pairing attempt

//==

function HandlerHIDConn(portHndl, result) as integer

 dim s$

 print "\n --- Connect : ";integer.h' result

Connecting to device 0016A4093A64

 --- Connect : 00000000

Disconnecting ...

 --- Disconnected

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

79

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

endfunc 1

//==

// Called after receiving HID data

//==

function HandlerHidData() as integer

 dim hConnHndl, hRprtHndl, nDropped, nBitLen

 dim report$

 '// get the handle of the connection and the report

 rc = BtcHIDRead(hConnHndl, hRprtHndl, nDropped)

 '// now export the report and print it

 rc = HIDReportExport(hRprtHndl, nBitLen, report$)

 print"\nHandle: ";hConnHndl; " Data: ";report$

endfunc 1

//**

// Equivalent to main() in C

//**

ONEVENT EvHidConn CALL HandlerHidConn

OnEvent EvBtc_HID_data_received CALL HandlerHidData

'// We must open HID device or HID host before initiating connection

rc = BtcHidHostOpen()

'// Set device to be connectable

rc = BtcSetConnectable(1)

print "\nWaiting for a HID device to connect and write to us"

waitevent

Expected Output:

Waiting for a HID device to connect and write to us

 --- Connect : 00000000

Handle: 130050 Data: 0000050000000000

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

80

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcHIDWrite

FUNCTION

A function to send a report to the Host or Device specified by the connection handle. Upon successful
submission of this function the event, EVHIDTXEMPTY event is called with the handle specified in this function.
Use the reception of this event to write more reports.

BTCHIDWRITE(nConnHandle, nReportHandle)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
BYVAL nHandle AS INTEGER
The handle of the connection that the report shall be written too.

nReportHandle
BYVAL nReportHandle AS INTEGER
The handle of the report we want to write

Example :: BtcHIDRead.sb

dim rc

//==

// Called after a pairing attempt

//==

function HandlerHIDConn(hConnHndl, result) as integer

 dim s$

 dim hRprtHndl, nBitLen

 print "\n --- Connect : ";integer.h' result

 // Write data as soon as we connect

 s$ = "1"

 // Get the bit length of the report

 nBitLen = (StrLen(s$) * 8)

 // Create a new HID report

 rc = HIDReportInit(nBitLen, hRprtHndl)

 // Add the string to it

 rc = HIDReportAppendStr(hRprtHndl, 0, nBitLen, s$)

 // Now write

 rc = BtcHidWrite(hConnHndl, hRprtHndl)

 if rc==0 then

 print "\nHid Write Successful"

 else

 print "\nError: "; integer.h'rc

 endif

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

81

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 // Finally destroy the report

 rc = HIDReportDestroy(hRprtHndl)

endfunc 1

//**

// Equivalent to main() in C

//**

ONEVENT EvHidConn CALL HandlerHidConn

'// We must open HID device or HID host before initiating connection

rc = BtcHidHostOpen()

'// Set device to be connectable

rc = BtcSetConnectable(1)

print "\nWaiting for a HID device to connect to us"

waitevent

Expected Output:

BtcHIDControl

FUNCTION

A function to send a control event to the Host or Device specified by the connection handle. Local Hosts bay
send all control events however local devices may only send the HID_CONTROL_VCABLEUNPLUG control event,
upon which the connection is terminated.

BTCHIDCONTROL(nHandle, nControl)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
BYVAL nHandle AS INTEGER
The handle of the connection that the report shall be written to.

nControl
BYVAL nControl AS INTEGER
The control event to send to the remote host or device specified by the connection handle.

0 Nop

Waiting for a HID device to connect and write to us

 --- Connect : 00000000

Hid Write Successful

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

82

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

1 Hard Reset

2 Soft Reset

3 Suspend

4 Exit Suspend

5 Virtual cable unplug

Example :: BtcHIDDisconnect.sb

dim rc

#define HID_CONTROL_NO_OPERATION 0

#define HID_CONTROL_HARD_RESET 1

#define HID_CONTROL_SOFT_RESET 2

#define HID_CONTROL_SUSPEND 3

#define HID_CONTROL_EXIT_SUSPEND 4

#define HID_CONTROL_VIRTUAL_CABLE_UNPLUG 5

//==

// Called after a connection attempt

//==

function HandlerHIDConn(portHndl, result) as integer

 print "\n --- Connect : ";integer.h' result

 // Immediately send a control event to the device upon connecting

 rc = BtcHIDControl(portHndl, HID_CONTROL_SOFT_RESET)

 if rc==0 then

 print "\nHID control: soft reset ..."

 else

 print "\nError:", integer.h'rc

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

ONEVENT EvHidConn CALL HandlerHidConn

'// We must open HID device or HID host before initiating connection

rc = BtcHidHostOpen()

'// Set device to be connectable

rc = BtcSetConnectable(1)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

83

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

print "\nWaiting for a HID device to connect and write to us"

waitevent

Expected Output:

BtcHIDConfig

FUNCTION

A function to configure various HID settings.

BTCHIDCONFIG(nKey, nValue)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nKey

BYVAL nKey AS INTEGER
The key of the configuration value to be modified from the following list.

0 Incoming HID Report internal buffer queue size in number of reports.

nValue
BYVAL nValue AS INTEGER
The value that the configuration value should be changed too.

Serial Port Profile
Serial Port Profile (abbreviated SPP) is used for serial data transmission with a remote device in both directions.
It behaves like a wireless replacement for a serial cable.

Events and Messages

EVSPPCONN

This event is thrown when a new SPP connection has been established or an error has occured. The message is
passed to a handler, which should be registered in the smartBASIC application, and contains nHandle (the
handle of the connection) and result (a result code). nHandle is only valid on a successful result code (0).

Note: When using a 4 MHz clock speed and bridging the UART to SPP, the fastest supported baud rate is
115200.

Possible errors are:

SPP_CONNECTION_TIMEOUT 0x01

SPP_CONNECTION_REFUSED 0x02

SPP_UNKNOWN_ERROR 0x03

SDP_TIMEOUT 0x10

Waiting for a HID device to connect and write to us

 --- Connect : 00000000

HID control: soft reset ...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

84

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

SDP_CONNECTION_ERROR 0x11

SDP_ERROR_RESPONSE 0x12

SDP_RFCOMM_NOT_FOUND 0xFF

See example given for BtcSppWrite.

EVBTC_SPP_CONN_TIMEOUT

This event is thrown when a connection attempt to an SPP device times out.

EVBTC_SPP_DATA_RECEIVED

This event is thrown when data is received via the Serial Port Profile. Usage is as shown in the example given for
BtcSppRead().

EVSPPTXEMPTY

This event is generated when the last byte in the SPP Tx buffer is transmitted. See example for BtcSppWrite().

EVSPPDISCON

This event is thrown when an SPP disconnection occurs. The message contains nHandle, the handle of the
connection.

Example:

dim rc, hPort, n$, a$

function HandlerSppConn(hConn, result) as integer

 dim s$, len

 print "\n --- Connect : ",hConn

 print "\nResult: ",integer.h' result

 s$ = "Hello"

 rc=BtcSppWrite(hConn, s$, len)

 if rc==0 then

 print "\nWrote ";len;" bytes"

 else

 print "\nError: "; integer.h'rc

 endif

 rc=BtcSppDisconnect(hConn)

endfunc 1

function HandlerSppDiscon(portHndl) as integer

 print "\n --- Disconnect : ", portHndl

endfunc 0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

85

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

onevent EvSppConn call HandlerSppConn

onevent EvSppDiscon call HandlerSppDiscon

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

rc=BtcSppOpen(hPort)

if rc == 0 then

 print "\nSPP service open. Handle: ";hPort

else

 print "\nError: ";rc

endif

rc=BtcGetFriendlyName(n$)

a$ = SysInfo$(4)

print "\n";n$;" : ";StrHexize$(a$)

print "\nModule is Discoverable. Make an SPP connection to the module.\n"

waitevent

Expected Output:

EVSPPSTATUS

This event from the SPP manager informs the application of a status event or break. The event contains:

nHandle = The handle of the connection.

nStatus = The status of the modem control signaling lines as a bitmask (see BtcSppSendStatus()).

nBreak = 0 for no Break signal and 1 for Break signal present.

SPP service open. Handle: 56833

LAIRD BT900 : 000016A4093A5F

Module is Discoverable. Make an SPP connection to the module.

 --- Connect : 40449

Result: 00000000

Wrote 5 bytes

 --- Disconnect : 40449

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

86

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nBreakTime = Time in milliseconds to issue break for.

BtcSppSendStatus

FUNCTION

The BT900 supports RFCOMM Modem Control Signaling, which is the transfer of RS232 port status over-the-air
using TS 07.10 signals RTC, RTR, IC, and DV. See the table below for mapping of these signals to their RS232
controls:

This function is used to send RFCOMM modem control signaling status to the remote connected device.

BTCSPPSENDSTATUS (nHandle, nStatus)

Returns
INTEGER, indicating the success of command

Arguments:

nHandle
byVal nHandle AS INTEGER
This specifies the connection handle on which to send status events.

nStatus

byVal nStatus AS INTEGER
The serial status as a bitmask:

RTS/CTS (RTR), Bit 0

DTR/DSR (RTC), Bit 1

RING (IC), Bit 2

DCD (DV), Bit 3.

BtcSppSendBreak

FUNCTION

This function sends a BREAK event to the remote connected device with the time specified.

BTCSPPSENDBREAK(nHandle, nBreakTime)

Returns
INTEGER, indicating the success of command

Arguments:

nHandle
byVal nHandle AS INTEGER
This specifies the connection handle on which to send break events.

nBreakTime
byVal nBreakTime AS INTEGER
The amount of time in ms to send the break event for

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

87

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcSPPSetParams

FUNCTION

This function is used to set the parameters of newly opened SPP connections. Must be called with no active
open connections. Adjusting these values from the default affects the maximum number of SPP connections
achievable.

BTCSPPSETPARAMS (nFrameSize, nReceiveCreds)

Returns
INTEGER, indicating the success of command:

 Opened successfully
Arguments:

nFrameSize
byRef nFrameSize AS INTEGER
The maximum frame size supported on new SPP connections. Default 192 Bytes, Range is from
23-1011 bytes.

nReceiveCreds
byRef nReceiveCreds AS INTEGER
Number of receive packets to queue. Default 3, Range is from 1-10 packets.

Example:

dim rc

rc=BtcSppSetParams(256,6)

if rc == 0 then

 print "\nSPP Parameters updated."

else

 print "\nError: ";rc

endif

Expected Output:

BtcSPPOpen

FUNCTION

This function is used to open the serial port service and listen for SPP connections.

BTCSPPOPEN (nHandle)

Returns INTEGER, a result code.

The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byRef nHandle AS INTEGER
On return this contains the handle for the SPP service.

SPP Parameters updated.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

88

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

dim rc, hSpp

rc=BtcSppOpen(hSpp)

if rc == 0 then

 print "\nSPP service open. Handle: ";hSpp

else

 print "\nError: ";rc

endif

rc=BtcSppClose(hSpp)

Expected Output:

BtcSPPClose

FUNCTION

Close the Serial Port being expedited by SPP Service.

BTCSPPCLOSE (nHandle)

Returns INTEGER, indicating the success of command:

Opened successfully

Arguments:

nHandle
byVal nHandle AS INTEGER
The handle of the SPP connection to close

Example:

dim rc, hSpp

rc=BtcSppOpen(hSpp)

rc=BtcSppClose(hSpp)

if rc == 0 then

 print "\nSPP port closed ";hSpp

else

 print "\nError: ";rc

endif

Expected Output:

SPP service open. Handle: 56833

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

89

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcSPPWrite

FUNCTION

This function is used to transmit a string of characters via the Serial Port service.

BTCSPPWRITE (nHandle, data$, nLen)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byVal nHandle AS INTEGER
This contains the handle for the applicable SPP connection (the BT900 can be in a connection
with multiple devices).

data$
byRef data$ AS STRING

This contains the data to send over SPP

nLen
byRef nLen AS INTEGER

On return this contains the number of bytes written.

Note: data$ cannot be a string constant (for example, “the cat”) but must be a string variable. If you must
use a const string, first save it to a temp string variable and then pass it to the function.

Example:

dim rc, hPort, n$, m$

function HandlerSppCon(hConn, result) as integer

 dim s$, len

 print "\n --- Connect : ",hConn

 print "\nResult: ",integer.h' result

 s$ = "Hello"

 rc=BtcSppWrite(hConn, s$, len)

 if rc==0 then

 print "\nWrote ";len;" bytes"

 else

 print "\nError: "; integer.h'rc

 endif

endfunc 1

function HandlerSppTxEmpty(hSppConn)

endfunc 0

SPP port closed 56323

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

90

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

onevent EvSppConn call HandlerSppCon

onevent EvSppTxEmpty call HandlerSppTxEmpty

rc=BtcSppOpen(hPort)

rc=BtcDiscoveryConfig(0,0) //general discoverability

rc=BtcSetDiscoverable(1,60) //discoverable for 1 minute

rc=BtcSetConnectable(1) //connectable

rc=BtcSetPairable(0) //not pairable

rc=BtcGetFriendlyName(n$)

m$ = SysInfo$(4)

print "\n";n$;" : ";StrHexize$(m$);"\n"

waitevent

print "\nExiting.."

Expected Output:

BtcSPPRead

FUNCTION

Read data from the oldest SPP data event. Since the event EVBTC_SPP_DATA_RECEIVED is invoked everytime
data is received via the SPP service, and data can be received from multiple SPP connections, this function
should be called in the EVBTC_SPP_DATA_RECEIVED handler to process all waiting data.

BTCSPPREAD (nHandle, data$, nLen)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byRef nHandle AS INTEGER
On return, this contains the handle of the SPP connection from which the data came.

data$
byRef data$ AS STRING
On return, this contains the data received from the connection identified by the handle above.

--- Connect : 40449

Result: 00000000

Wrote 5 bytes

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

91

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nLen
byRef nLen AS INTEGER

On return this contains the number of bytes read.

Note: data$ cannot be a string constant (for example, “the cat”) but must be a string variable.

Example:

dim rc

dim hSpp

dim n$, a$

function HandlerSppConn(portHandle, result)

 print "\n --- Connect : ",portHandle

 print "\nResult: ";integer.h' result

endfunc 1

'//called when data is received via spp

function HandlerSppData()

 dim hPort

 dim data$

 dim readLen

 '//read and print data while there is data available to read

 while BtcSppRead(hPort, data$, readLen) == 0

 if readLen>0 then

 print"\nPort Handle: ";hPort; "\nData: ";data$;"\nLength: ";readLen

 endif

 endwhile

endfunc 1

rc=BtcSppOpen(hSpp)

if rc == 0 then

 print "\nSPP service open. Handle: ";hSpp

else

 print "\nError: ";rc

endif

OnEvent EVSPPCONN call HandlerSppConn

OnEvent EVBTC_SPP_DATA_RECEIVED call HandlerSppData

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

rc=BtcSppOpen(hSpp)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

92

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

rc=BtcGetFriendlyName(n$)

a$ = SysInfo$(4)

print "\n";n$;" : ";StrHexize$(a$)

print "\nModule is Discoverable. Make an SPP connection\n"

WaitEvent

Expected Output:

BtcSPPConnect

FUNCTION

Connect to an SPP device defined by btaddr$. In the event of one device of a connected pair being forcibly reset,
the partner may not establish a new connection until the link supervision timout expires which is typicaly 20
seconds. In this event a timeout event is returned and the action would be to try again.

BTCSPPCONNECT (btaddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

btaddr$
byRef btaddr$ AS STRING
The Bluetooth address of the device for connection

Example:

dim rc, i

'//BT address of device to connect to. You will have to change this

dim BTA$

BTA$ = "\00\16\A4\09\3A\5F"

SPP service open. Handle: 56833

LAIRD BT900 : 000016A4093A5F

Module is Discoverable. Make an SPP connection

 --- Connect : 40449

Result: 00000000

Port Handle: 40449

Data: hello

Length: 6

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

93

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

'//array with handles for spp connections

dim hSpp

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

'//make spp connection

rc=BtcSppConnect(BTA$)

print "\nConnecting to device ";StrHexize$(BTA$)

function HandlerSppConn(portHndl, result) as integer

 hSpp = portHndl

 print "\n --- Connect : ",hSpp, StrHexize$(BTA$)

 print "\nResult: ",integer.h' result

endfunc 0

onevent EvSppConn call HandlerSppConn

waitevent

print "\nExiting..."

Expected Output:

BtcSPPDisconnect

FUNCTION

Disconnect from an SPP device.

BTCSPPDISCONNECT(nHandle)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
BYREF nHandle AS INTEGER
The handle of the connection to be droped

Connecting to device 0016A4093A5F

 --- Connect : 40449 0016A4093A5F

Result: 00000000

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

94

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

dim rc, hConn, n$, hPort, a$

function HandlerSppConn(portHndl, result) as integer

 dim s$, len

 hConn = portHndl

 print "\n --- Connect :","", hConn

 print "\nResult: ";integer.h' result

 rc=BtcSppDisconnect(hConn)

 if rc==0 then

 print "\n\nDisconnecting..."

 else

 print "\nError:", integer.h'rc

 endif

endfunc 1

//--

// Called on an SPP disconnection

//--

function HandlerSppDiscon(hConn) as integer

 print "\n --- Disconnected :", hConn

 // rc=BtcSppClose(hPort)

endfunc 0

onevent EvSppConn call HandlerSppConn

onevent EvSppDiscon call HandlerSppDiscon

rc=BtcGetFriendlyName(n$)

a$ = SysInfo$(4)

print "\n";n$;" : ";StrHexize$(a$)

print "\nModule is Discoverable. Make an SPP connection\n"

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

rc=BtcSppOpen(hPort)

waitevent

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

95

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

Stream Functions

Stream functions are used to combine different types of streams (e.g. UART, SPP) together so that data
transmission between these streams is handled in the background without using smartBASIC to manually move
the data to another stream. This functionality is useful when no processing of the received data from a stream is
needed as data between streams is sent unaltered. At any point, a stream bridge connection can be unbridged
and control returned to smartBASIC.

Events and Messages

EVSTREAMIDLE

This event is thrown when a stream bridge goes idle, this information can be useful in disconnecting a stalled

stream. The timeout is configured with StreamBridgeConfig().

StreamGetUartHandle

FUNCTION

Returns the stream handle of the UART.

STREAMGETUARTHANDLE(nStreamHandle)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
BYREF bStreamHandle AS INTEGER
Returns the handle of the UART

See example for StreamBridge.

LAIRD BT900 : 000016A4093A5F

Module is Discoverable. Make an SPP connection

 --- Connect : 40449

Result: 00000000

Disconnecting...

 --- Disconnected : 40449

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

96

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

StreamGetSPPHandle

FUNCTION

Get the stream handle of an SPP connection.

STREAMGETSPPHANDLE(nHandle, nStreamHandle)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
BYVAL nHandle AS INTEGER
The handle of the SPP connection to use

nHandle
BYREF nStreamHandle AS INTEGER

The handle of the stream port

See example for StreamBridge.

StreamBridge

FUNCTION

Bridges two stream connections together.

StreamBridge(nHandleOne, nHandleTwo, nHandle)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
BYVAL nHandleOne AS INTEGER
First stream port to bridge

nHandle
BYVAL nHandleTwo AS INTEGER

Second stream port to bridge

nHandle
BYREF nHandle AS INTEGER

Returns the handle of the bridged connection

Example :: StreamBridge.sb
(See at: https://github.com/LairdCP/BT900-Applications/tree/master/Manual%20Code)

dim rc, nSHandleG, nHandleB, nSppHandle

#define UseStreamIdle 1 //When set to 1 will utilise the stream idle event (after 60 seconds

without data being received, the stream connection will be released and the SPP device

disconnected), when set to 0 the timeout event will not be enabled.

#define StreamIdleTimeout 60 //Timeout (in seconds) that will cause a stream idle event to

occur after this time has passed without receiving any SPP data (UseStreamIdle, above, must

be set to 1)

SUB AssertRC(rc,line)

 IF rc != 0 THEN

 PRINT "Error at line ";line;", code: ";INTEGER.H'rc;"\n"

 ENDIF

ENDSUB

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
https://github.com/LairdCP/BT900-Applications/tree/master/Manual%20Code

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

97

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

FUNCTION HandlerPairReq()

 //Pair request

 dim BTA$

 rc=BtcGetPairRequestBDAddr(BTA$)

 AssertRC(rc, 17)

 PRINT "\nPairing requested from device: "; StrHexize$(BTA$)

 PRINT "\nAccepting pair request"

 rc=BtcSendPairResp(1)

 AssertRC(rc, 21)

ENDFUNC 1

FUNCTION SPPConnect(nHandle, Result)

 //SPP connected

 dim UARTStream, SPPStream

 nSppHandle = nHandle

 PRINT "Connected\n"

 //Bridge to UART

 rc = StreamGetUartHandle(UARTStream)

 AssertRC(rc, 32)

 rc = StreamGetSPPHandle(nSppHandle, SPPStream)

 AssertRC(rc, 34)

 rc = StreamBridge(UARTStream, SPPStream, nHandleB)

 AssertRC(rc, 36)

 IF (UseStreamIdle == 1) THEN

 //Stream idle timeout enabled

 rc = StreamBridgeConfig(nHandleB, 0, StreamIdleTimeout)

 AssertRC(rc, 40)

 ENDIF

ENDFUNC 1

FUNCTION SPPTimeout()

 //SPP connection timeout

 PRINT "Timeout\n"

ENDFUNC 1

FUNCTION SPPDisconnect(nHandle)

 //SPP disconnected

 PRINT "Disconnected\n"

ENDFUNC 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

98

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

FUNCTION HandlrStreamIdle(nHandle)

 //SPP Stream timeout (Only enabled if UseStreamIdle is set to 1)

 rc = StreamUnBridge(nHandleB)

 AssertRC(rc, 57)

 PRINT "Stream stalled, stream bridge released\n"

 rc = BtcSppDisconnect(nSppHandle)

 AssertRC(rc, 60)

ENDFUNC 1

//Create SPP host connection

rc=BtcDiscoveryConfig(0, 0)

rc=BtcSetConnectable(1)

rc=BtcSetPairable(1)

rc=BtcSavePairings(1)

rc=BtcSetDiscoverable(1, 0)

rc=BtcSppOpen(nSHandleG)

//SPP Events

ONEVENT EVSPPCONN CALL SPPConnect //SPP connected

ONEVENT EVBTC_SPP_CONN_TIMEOUT CALL SPPTimeout //SPP connection timeout

ONEVENT EVSPPDISCON CALL SPPDisconnect //SPP disconnection

ONEVENT EVBTC_PAIR_REQUEST CALL HandlerPairReq //Pair request

IF (UseStreamIdle == 1) THEN

 ONEVENT EVSTREAMIDLE CALL HandlrStreamIdle //Stream idle timeout

ENDIF

WAITEVENT

Expected Output:

StreamUnBridge

FUNCTION

Unbridges a stream connection created using StreamBridge.

STREAMUNBRIDGE(nHandle)

Returns INTEGER, a result code.

The most typical value is 0x0000, indicating a successful operation.

Connected

Test Data from another BT900

Disconnected

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

99

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Arguments:

nHandle
BYVAL nHandle AS INTEGER
The handle of the bridged connection to unbridge

See example for StreamBridge.

StreamBridgeConfig

FUNCTION

Configures an existing stream bridge with a key value pair.

STREAMBRIDGECONFIG(nHandle, nKey, nValue)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
BYVAL nHandle AS INTEGER
The handle of the existing stream bridge to apply the config too.

nKey

BYVAL nKey AS INTEGER
The key of the configuration value to be modified from the following list.

0 Stream idle timeout (in seconds) of the specified bridge.

nValue
BYVAL nValue AS INTEGER
The value that the configuration value should be changed to.

See example for StreamBridge.

Pairing, Bonding, and Security Manager Functions

This section describes routines which manage all aspects of BTC security such as Pairing and Bonding, IO
capabilities, OOB data, Passkey submission, and Just Works config. Pairing is the process of two devices
exchanging a link key. This is required each time one of the devices is set pairable and the other device tries to
connect (if the two devices are not bonded). If the link key (and other information including the Bluetooth
address of the peer) gets stored in the bonding manager when pairing, the two devices become bonded and do
not need to pair again upon subsequent connections.

The bonding manager consists of a rolling database and a persistent database. A link key for a new bond is
always stored in the rolling database. When the rolling database is full and a new bond is created, the oldest link
key in this database is replaced with the key for the new bond. To prevent a link key from being replaced, it can
be moved to the persistent database by calling BtcBondingPersistKey() where it won’t be replaced unless
BtcBondingEraseKey() or BtcBondingEraseAll() is called.

Events and Messages

EVBTC_PAIR_REQUEST

This event is thrown on a pairing request from another device. See examples given for EVBTC_PAIR_RESULT and
BtcPair.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

100

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVBTC_OOB_AVAILABLE_REQUEST

This event is thrown when BtcSecMngrOOBPref is set to 2, prompt me, and requires the user respond with the
availability of OOB data for a device with BtcSecMngrOOBAvailable.

Example:

dim rc

//==

// Called when there is a OOB data availability request

//==

function HandlerOOBAvail()

 print "OOB data available ? \n"

endfunc 1

//**

// Equivalent to main() in C

//**

OnEvent EVBTC_OOB_AVAILABLE_REQUEST call HandlerOOBAvail

// set device to be pairable and connectable

rc = BtcSetPairable(1)

rc = BtcSetConnectable(1)

// When pairing is in progress, ask me if Oob data is available

rc = BtcSecMngrOobPref(2)

print "Waiting for authentication request\n"

WAITEVENT

Expected output:

Waiting for authentication request

OOB data available ?

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

101

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVBTC_PIN_REQUEST

This event is thrown on a PIN request from another device during pairing. See examples given for
EVBTC_PAIR_RESULT and BtcPair.

EVBTC_PAIR_RESULT

This message is thrown after a pairing attempt and comes with one parameter which is the result code. A list of
result codes and descriptions can be found here.

If you receive “BT_HCI_STATUS_CODE_PIN_OR_LINKKEY_MISSING”, the device has a stale link key. The module
does not delete a stale key automatically due to security concerns, please remove the key manually and re-pair.

Example:

dim rc,mac$,pin$,n$,a$

pin$ = "271192"

//==

// Called on a Pairing request from another device

//==

function HandlerPairReq()

 rc=BtcGetPairRequestBDAddr(mac$)

 if rc==0 then

 print "\nPairing requested from device: "; StrHexize$(mac$)

 print "\nAccepting pair request"

 rc=BtcSendPairResp(1)

 else

 print "\nErr: "; integer.h'rc

 endif

endfunc 1

//==

// Called on a PIN request from another device

//==

function HandlerPinReq()

 rc=BtcGetPinRequestBDAddr(mac$)

 if rc==0 then

 print "\nPIN requested from device: "; StrHexize$(mac$)

 print "\nSending PIN respose with PIN '271192'"

 rc=BtcSendPINResp(pin$)

 else

 print "\nErr: "; integer.h'rc

 endif

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

102

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

endfunc 1

//==

// Called after a pairing attempt

//==

function HandlerPairRes(nRes)

 if nRes == 0 then

 print "\n --- Successfully paired with device ";StrHexize$(mac$)

 else

 print "\n --- Pairing attempt error: (";integer.h'nRes;")"

 endif

endfunc 1

OnEvent EVBTC_PIN_REQUEST call HandlerPinReq

OnEvent EVBTC_PAIR_REQUEST call HandlerPairReq

OnEvent EVBTC_PAIR_RESULT call HandlerPairRes

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

rc=BtcSetPairable(1)

rc=BtcGetFriendlyName(n$)

a$ = SysInfo$(4)

print "\n";n$;" : ";StrHexize$(a$)

print "\nModule is Discoverable and Pairable. Pair with the module.\n"

WaitEvent

Expected Output (Legacy Pairing):

LAIRD BT900 : 000016A4093A5F

Module is Discoverable and Pairable. Pair with the module.

PIN requested from device: 0016A400115E

Sending PIN respose with PIN '271192'

 --- Successfully paired with device 0016A400115E

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

103

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output (Simple Secure Pairing):

EVBTC_AUTHREQ

This message is thrown after a Secure Simple Pairing or Legacy authentication request comes. Its parameter
denotes the type of authentication from the following list.

AuthType Description

0 A device is requesting Secure Simple Pairing - JustWorks, use BtcSendPAIRResp to respond.

1 A device is requesting Secure Simple Pairing - Passkey, use BtcSecMngrPasskey to respond.

2 A device is requesting Secure Simple Pairing - OOB, use BtcSecMngrOOBKey to respond.

3 A device is requesting Legacy PIN entry, use BtcSendPINResp to respond.

Example:

#define EBTCAUTHKEYTYPE_NONE 0

#define EBTCAUTHKEYTYPE_PASSKEY 1

#define EBTCAUTHKEYTYPE_OOB 2

#define EBTCAUTHKEYTYPE_PIN 3

dim rc

//==

// Called after a pairing attempt

//==

function HandlerAuthReq(reqType)

 print "Authentication type: "

 if reqType == EBTCAUTHKEYTYPE_NONE then

 print "NONE\n"

 elseif reqType == EBTCAUTHKEYTYPE_PASSKEY then

 print "PASSKEY\n"

 elseif reqType == EBTCAUTHKEYTYPE_OOB then

 print "OOB\n"

 elseif reqtype == EBTCAUTHKEYTYPE_PIN then

LAIRD BT900 : 000016A4093A5F

Module is Discoverable and Pairable. Pair with the module.

Pairing requested from device: 0016A4093A92

Accepting pair request

 --- Successfully paired with device 0016A4093A92

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

104

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 print "PIN\n"

 else

 print "UNKNOWN\n"

 endif

endfunc 1

//==

// Called after receiving a pair response

//==

function HandlerPairResp(res)

 if res == 0 then

 print "Successfully paired\n"

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

OnEvent EVBTC_AUTHREQ call HandlerAuthReq

// Set the device to be pairable and connectable

rc = BtcSetPairable(1)

rc = BtcSetConnectable(1)

// Set JustWorks configuration to 1 to get EVBTC_AUTHREQ event (default)

rc = BtcSecMngrJustWorksConf(1)

print "Waiting for authentication request\n"

WAITEVENT

 Expected Output:

Waiting for authentication request

Authentication type: NONE

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

105

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVBTC_PASSKEY

This message is thrown after a Secure Simple Pairing requiring the BT900 to display a passkey comes in, its
parameter denotes the passkey to display, the passkey must be zero padded to 6 digits if shorter.

BtcGetPAIRRequestBDAddr

FUNCTION

Get the Bluetooth address of the device requesting a pairing using Secure Simple Pairing.

BTCGETPAIRREQUESTBDADDR (strBDAddr$)

Returns INTEGER, a result code.

The most typical value is 0x0000, indicating a successful operation.

Arguments:

strBDAddr$
byREF strBDAddr$ AS STRING
On return this string contains the Bluetooth address of the device that the pairing request came
from.

See examples given for EVBTC_PAIR_RESULT and BtcPair.

BtcGetPINRequestBDAddr

FUNCTION

Get the Bluetooth address of the device requesting a pairing using Legacy PIN.

BTCGETPINREQUESTBDADDR (strBDAddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strBDAddr$
byREF strBDAddr$ AS STRING
On return, this string contains the Bluetooth address of the device requesting a PIN.

See examples given for EVBTC_PAIR_RESULT and BtcPair.

BtcSendPAIRResp

FUNCTION

This function is used to accept or decline a pairing request.

BTCSENDPAIRRESP (nAccept)

Returns INTEGER, a result code.

The most typical value is 0x0000, indicating a successful operation.

Arguments:

nAccept

byVAL nAccept AS INTEGER

Decline

Accept

See example given for EVBTC_PAIR_RESULT.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

106

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcSendPINResp

FUNCTION

During a pairing procedure, this function responds to a PIN request with a given PIN.

BTCSENDPINRESP (strPIN$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strPIN$
byVAL strPIN$ AS STRING
This is the PIN that is used. For example: 1234

See examples given for EVBTC_PAIR_RESULT and BtcPair.

BtcSavePairings

FUNCTION

For subsequent incoming pair requests, this function sets whether or not to bond with devices by storing the
relevant information (including the link key and Bluetooth address) in the bonding manager.

BTCSAVEPAIRINGS(fSave)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

fSave

byVal fSave AS INTEGER
If this flag is:

0 – Pairing information is not stored in the bonding manager

1 – Pairing information is stored in the bonding manager

Example:

dim rc

rc=BtcSavePairings(1)

print "\nrc: "; rc

Expected Output:

0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

107

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcPair

FUNCTION

This function is used to initiate pairing with the device identified by the given Bluetooth address and to specify
whether to bond with the device by storing pairing information in the bonding manager. Before using this
function, the BT900 must be set Pairable using the function BtcSetPairable()

BTCPAIR (strBDAddr$, nSave)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Argument:

strBDAddr$
byREF strBDAddr$ AS STRING
The Bluetooth address of the device to pair with. Must be 6 bytes long.

nSave

byVal nSave AS INTEGER

This flag sets whether or not to bond.

Value Description

0 Do not store pairing information (don’t bond)

1 Store pairing information (bond)

2 Use default as specified by BtcSavePairings()

Example:

dim rc, adr$, n$, m$

#define BOND_WHEN_PAIRING 1

//You will need to change the following #defines

#define PIN "0000"

#define DEV_BT_ADDR "\94\35\0A\A9\9A\3C"

adr$ = DEV_BT_ADDR

// adr$ = StrDehexize$(adr$)

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 else

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

108

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 print "\nInitiating Pairing..."

 endif

EndSub

//==

// Called when there is a pairing request from another device

//==

function HandlerPairReq()

 rc=BtcGetPAIRRequestBDAddr(adr$)

 print "\nPair Req: "; StrHexize$(adr$)

 rc=BtcSendPairResp(1)

 print "\nAccepted, Pairing..."

endfunc 1

//==

// Called on a PIN request from another device

//==

function HandlerPINReq()

 rc=BtcGetPinRequestBDAddr(adr$)

 print "\nPIN Req. Sending pin " + PIN

 rc=BtcSendPinResp(PIN)

endfunc 1

//==

// Called after a pairing attempt

//==

function HandlerPairRes(res)

 dim i : i=res

 print "\n --- Pair Result: ("; integer.h'res; ") ";StrHexize$(adr$);"\n";

endfunc 0

onevent evbtc_pin_request call HandlerPINReq

//These two events MUST have handlers registered for them

onevent evbtc_pair_result call HandlerPairRes

onevent evbtc_pair_request call HandlerPairReq

'//get friendly name, print it and the BT address

rc=BtcGetFriendlyName(n$)

m$ = SysInfo$(4)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

109

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

print n$;" : "; StrHexize$(m$)

'//Set connectable and pairable

rc=BtcSetConnectable(1)

if rc==0 then

 print "\nConnectable"

endif

rc=BtcSetPairable(1)

if rc==0 then

 print "\nPairable"

endif

rc=BtcPair(adr$, BOND_WHEN_PAIRING)

AssertRC(rc,51)

waitevent

Expected Output:

BtcBondingStats

FUNCTION

This function is used to get the classic BT bonding manager database statistics.

BTCBONDINGSTATS (nRolling, nPersistent)

Returns The total capacity of the database

Arguments:

nRolling
byREF nRolling AS INTEGER

On return, this integer contains the total number of bonds in the rolling database.

nPersistent
byREF nPersistent AS INTEGER

On return, this integer contains the total number of bonds in the persistent database.

LAIRD BT900 : 000016A4093A5F

Connectable

Pairable

Initiating Pairing...

Pair Req: 94350AA99A3C

Accepted, Pairing...

 --- Pair Result: (00000000) 94350AA99A3C

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

110

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

dim rc, nRoll, nPers

print "\n:Bonding Manager Database Statistics:"

print "\nCapacity: ","", BtcBondingStats(nRoll, nPers)

print "\nRolling: ","",nRoll

print "\nPersistent: ",nPers

Expected Output:

BtcBondingEraseKey

FUNCTION

This function is used to erase a link key from the database for the specified BT address.

BTCBONDINGERASEKEY (btaddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

btaddr$
byREF btaddr$ AS STRING
Bluetooth address in big endian. Must be exactly six bytes long.

Example:

dim rc, BTA$

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 else

 print "\nLink key for device "; StrHexize$(BTA$); " erased"

 endif

EndSub

:Bonding Manager Database Statistics:

Capacity: 16

Rolling: 2

Persistent: 0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

111

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BTA$ = "\00\80\98\04\4e\91"

rc=BtcBondingEraseKey(BTA$)

AssertRC(rc,17)

Expected Output:

BtcBondingEraseAll

FUNCTION

This function is used to erase all link keys in the database, including both those in the rolling and persistent
databases.

BTCBONDINGERASEALL ()

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments None

Example:

dim rc, nRoll, nPers

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 else

 print "\nAll link keys in the bonding manager database erased\n"

 endif

EndSub

rc=BtcBondingEraseAll()

AssertRC(rc,17)

print "\n:Bonding Manager Database Statistics:"

print "\nCapacity: ","", BtcBondingStats(nRoll, nPers)

print "\nRolling: ","",nRoll

Link key for device 008098044E91 erased

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

112

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

print "\nPersistent: ",nPers

Expected Output:

BtcBondingPersistKey

FUNCTION

This function is used to make a link key persistent by transferring it from the rolling database to the persistent
database.

BTCBONDINGPERSISTKEY (btaddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

btaddr$
byREF btaddr$ AS STRING
Bluetooth address in big endian. Must be exactly six bytes long.

Example:

dim rc, BTA$, key$, nRoll, nPers

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 else

 print "\nLink key for device ";StrHexize$(BTA$); " now persistent\n"

 endif

EndSub

'//Make a link key persistent

All link keys in the bonding manager database erased

:Bonding Manager Database Statistics:

Capacity: 16

Rolling: 0

Persistent: 0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

113

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BTA$="\00\80\98\04\4E\91"

rc=BtcBondingPersistKey(BTA$)

AssertRC(rc,35)

print "\n:Bonding Manager Database Statistics:"

print "\nCapacity: ","", BtcBondingStats(nRoll, nPers)

print "\nRolling: ","",nRoll

print "\nPersistent: ",nPers

Expected Output:

BtcBondingGetFirst

FUNCTION

This function is used to retrieve details about the first classic Bluetooth bond in the BT900’s database.
Information returned includes the key, the type of the key, the database its located in and the target Bluetooth
address.

BTCBONDINGGETFIRST (btaddr$, btkey$, keytype, bonddb)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

btaddr$
byREF btaddr$ AS STRING
Bluetooth address in big endian format. Exactly six bytes long.

btkey$
byREF btkey$ AS STRING

Bluetooth bond key. Exactly 16 bytes long.

keytype

byREF keytype AS INTEGER

Returns the type of the key; values include the following:

Value Description

0 Combination key

1 Local unit key

2 Remote unit key

3 Debug combination key

4 Unauthenticated combination key

5 Authenticated combination key

Link key for device 008098044E91 now persistent

:Bonding Manager Database Statistics:

Capacity: 16

Rolling: 3

Persistent: 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

114

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

6 Changed combination key

7 Illegal key

bonddb

byREF bonddb AS INTEGER

Which database the key is in; values include the following:

Value Description

0 Persistent database

1 Rolling database

Example:

dim rc, Addr$, Key$, Type, DB

rc = BTCBondingGetFirst(Addr$, Key$, Type, DB)

IF (rc == 0) THEN

 PRINT "Address ";STRHEXIZE$(Addr$);", key: ";STRHEXIZE$(Key$);", type: ";Type;" in "

 IF (DB == 1) THEN

 //Rolling

 PRINT "rolling"

 ELSE

 //Persistent

 PRINT "persistent"

 ENDIF

 PRINT " database.\n"

 //Get next key

 rc = BTCBondingGetNext(Addr$, Key$, Type, DB)

 IF (rc == 0) THEN

 //Additional bond(s)

 PRINT "Address ";STRHEXIZE$(Addr$);", key: ";STRHEXIZE$(Key$);", type: ";Type;" in "

 IF (DB == 1) THEN

 //Rolling

 PRINT "rolling"

 ELSE

 //Persistent

 PRINT "persistent"

 ENDIF

 PRINT " database.\n"

 ELSE

 //No additional bonds

 PRINT "No additional bonds\n"

 ENDIF

ELSE

 //No bonds

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

115

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "No bonds to output.\n"

ENDIF

Expected Output:

BtcBondingGetNext

FUNCTION

This function is used to retrieve details about the next classic Bluetooth bond in the BT900’s database (after
having used BtcBondingGetFirst). Information returned includes the key, the type of the key, the database its
located in and the target Bluetooth address.

BTCBONDINGGETNEXT (btaddr$, btkey$, keytype, bonddb)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

btaddr$
byREF btaddr$ AS STRING
Bluetooth address in big endian. It is exactly six bytes long.

btkey$
byREF btkey$ AS STRING

Bluetooth bond key. It is exactly sixteen bytes long.

keytype

byREF keytype AS INTEGER

Returns the type of the key; values include the following:

Value Description

0 Combination key

1 Local unit key

2 Remote unit key

3 Debug combination key

4 Unauthenticated combination key

5 Authenticated combination key

6 Changed combination key

7 Illegal key

bonddb

byREF bonddb AS INTEGER

Which database the key is in;

Value Description

0 Persistent database

1 Rolling database

See example for BtcBondingGetFirst.

Address 0016A406ACCC, key: 0227E51A6F509ED11C4C603AD0E41728, type: 4 in rolling database.

No additional bonds

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

116

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcSecMngrPasskey

FUNCTION

This function submits a passkey to the underlying stack during a pairing procedure when prompted by the
EVBTC_ AUTHREQ with AuthType set to 1. See Events and Messages.

BTCSECMNGRPASSKEY(nPassKey)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nPassKey

byVal nPassKey AS INTEGER.

The passkey to submit to the stack. Submit a value outside the range 0 to 999999 to reject the
pairing.

Example:

#define EBTCAUTHKEYTYPE_PASSKEY 1

dim rc

//==

// Called after a pairing attempt

//==

function HandlerAuthReq(reqType)

 if reqType == EBTCAUTHKEYTYPE_PASSKEY then

 // We got a passkey request, send the passkey here

 print "Got a passkey request. Please enter the passkey\n> "

 endif

endfunc 1

//==

// Called after receiving a pair response

//==

function HandlerPairResp(res)

 if res == 0 then

 print "Successfully paired\n"

 endif

endfunc 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

117

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//==

// Called after data has been recieved via Uart

//==

function HandlerUartRx()

 dim nMatch, nPassKey, stRsp$

 // read UART data until carriage return and save it into stRsp$

 nMatch=UartReadMatch(stRsp$,13)

 if nMatch!=0 then

 //Extract passkey from input string

 rc = ExtractIntToken(stRsp$, nPassKey)

 // Submit passkey

 rc = BtcSecMngrPassKey(nPassKey)

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

OnEvent EVBTC_AUTHREQ call HandlerAuthReq

OnEvent EVBTC_PAIR_RESULT call HandlerPairResp

OnEvent EVUARTRX call HandlerUartRx

// Set the device to be pairable and connectable

rc = BtcSetPairable(1)

rc = BtcSetConnectable(1)

// Set the io capability to 'Keyboard'

// This means we can enter passkey

rc = BtcSecMngrIoCap(2)

print "Waiting for authentication request\n"

WAITEVENT

Expected output:

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

118

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BtcSecMngrJustWorksConf

FUNCTION

This function is used to set the default action for when a pairing is in progress and the I/O Capability negotiation
results in Just Works.

BTCSECMNGRJUSTWORKSCONF(nJustWorksConf)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nJustWorksConf

byVal nJustWorksConf AS INTEGER.
If set to 0, pairing just works without confirmation. If set to 1, when pairing is in progress,
you get an EVBTC_ AUTHREQ with AuthType 0, and EVBTC_PAIR_REQUEST event. In this
case you accept or decline the pairing request with BtcSendPAIRResp.

Example:

dim rc

//==

// Called when receiving a pair response

//==

function HandlerPairRes(Resp)

 if Resp == 0 then

 print "Paired successfully\n"

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

OnEvent EVBTC_PAIR_RESULT call HandlerPairRes

// Set the device to be pairable and connectable

rc = BtcSetPairable(1)

rc = BtcSetConnectable(1)

Waiting for authentication request

Got a passkey request. Please enter the passkey

> 492585

Successfully paired

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

119

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

// Set to 0 so that pairing just works

rc = BtcSecMngrJustWorksConf(0)

print "Waiting for authentication request\n"

WAITEVENT

Expected output:

BtcSecMngrOOBAvailable

FUNCTION

This function is used indicate that OOB data is available for the requested connection, called as a result of
EVBTC_OOB_AVAILABLE_REQUEST.

BTCSECMNGROOBAVAILABLE(nOobAvail)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nOobAvail
byVal nOobAvail AS INTEGER.
If set to 0, we do not have OOB data available. If set to 1, OOB data is available.

Example:

#define EBTCAUTHKEYTYPE_NONE 0

#define EBTCAUTHKEYTYPE_PASSKEY 1

#define EBTCAUTHKEYTYPE_OOB 2

#define EBTCAUTHKEYTYPE_PIN 3

dim rc

//==

// Called when there is a OOB data availability request

//==

function HandlerOOBAvail()

 print "\nOOB data available ? \n"

 // specify that oob data is not available

 rc = BtcSecMngrOobAvailable(0)

 if rc == 0 then

 print "Specified that oob data is not available\n"

Waiting for authentication request

Paired successfully

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

120

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 endif

endfunc 1

//==

// Called after a pairing attempt

//==

function HandlerAuthReq(reqType)

 print "Authentication type: "

 if reqType == EBTCAUTHKEYTYPE_NONE then

 print "NONE\n"

 elseif reqType == EBTCAUTHKEYTYPE_PASSKEY then

 print "PASSKEY\n"

 elseif reqType == EBTCAUTHKEYTYPE_OOB then

 print "OOB\n"

 elseif reqtype == EBTCAUTHKEYTYPE_PIN then

 print "PIN\n"

 else

 print "UNKNOWN\n"

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

OnEvent EVBTC_AUTHREQ call HandlerAuthReq

OnEvent EVBTC_OOB_AVAILABLE_REQUEST call HandlerOOBAvail

// set device to be pairable and connectable

rc = BtcSetPairable(1)

rc = BtcSetConnectable(1)

// When pairing is in progress, ask me if Oob data is available

rc = BtcSecMngrOobPref(2)

print "Waiting for authentication request\n"

WAITEVENT

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

121

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected output:

BtcSecMngrOOBPref

FUNCTION

This function is used to specify if OOB data is available for the pairing process, this applies to all incoming and
outgoing pairings. If a mix of devices may attempt pairing, “prompt me” is recommended.

BTCSECMNGROOBPREF(nOobPreferred)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nOobPreferred
byVal nOobPreferred AS INTEGER.
If set to 0, we do not have OOB data available. If set to 1, OOB data is available. If set to 2,
promt me for OOB data availability the prompt event is EVBTC_OOB_AVAILABLE_REQUEST.

#define EBTCAUTHKEYTYPE_NONE 0

#define EBTCAUTHKEYTYPE_PASSKEY 1

#define EBTCAUTHKEYTYPE_OOB 2

#define EBTCAUTHKEYTYPE_PIN 3

dim rc

//==

// Called after a pairing attempt

//==

function HandlerAuthReq(reqType)

 print "Authentication type: "

 if reqType == EBTCAUTHKEYTYPE_NONE then

 print "NONE\n"

 elseif reqType == EBTCAUTHKEYTYPE_PASSKEY then

 print "PASSKEY\n"

 elseif reqType == EBTCAUTHKEYTYPE_OOB then

 print "OOB\n"

 elseif reqtype == EBTCAUTHKEYTYPE_PIN then

 print "PIN\n"

Waiting for authentication request

OOB data available ?

Specified that oob data is not available

Authentication type: NONE

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

122

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 else

 print "UNKNOWN\n"

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

OnEvent EVBTC_AUTHREQ call HandlerAuthReq

// set device to be pairable and connectable

rc = BtcSetPairable(1)

rc = BtcSetConnectable(1)

// Specify that the oob data is not available

rc = BtcSecMngrOobPref(0)

print "Waiting for authentication request\n"

WAITEVENT

Expected Output:

BtcSecMngrRetrieveLocalOOBKey

FUNCTION

This function retrieves the local OOB hash and randomiser from the baseband, this must be transmitted to the
pairing partner device out of band and applied using BtcSecMngrOOBKey.

BTCSECMNGRRETRIEVELOCALOOBKEY(oobHash$, oobRand$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

oobHash$
byRef oobHash$ AS STRING.
This is the OOB hash from the baseband and is a 16 byte string.

oobRand$
byRef oobKey$ AS STRING.

This is the OOB randomiser from the baseband and is a 16 byte string.

Waiting for authentication request

Authentication type: NONE

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

123

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

dim rc, oobHash$, oobRand$

// Set device to be pairable

rc = BtcSetPairable(1)

// Retrieve local OOB Hash and Randomiser

rc = BtcSecMngrRetrieveLocalOobKey(oobHash$, oobRand$)

// Display the hash and the randomiser

print "Hash : ";StrHexize$(oobHash$);"\n"

print "Randomiser : ";StrHexize$(oobRand$);"\n"

Expected output:

BtcSecMngrOOBKey

FUNCTION

This function submits an OOB (Out Of Band) hash and randomiser received from the pairing partner to the
underlying stack during a pairing procedure when prompted by the EVBTC_ AUTHREQ with AuthType set to 2.
See Events & Messages.

BTCSECMNGROOBKEY(oobHash$, oobRand$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

oobHash$
byVal oobHash$ AS STRING.
This is the OOB hash to provide to the baseband and is a 16 byte string.

oobRand$
byRef oobRand $ AS STRING.
This is the OOB randomiser to provide to the baseband and is a 16 byte string.

Example:

#define EBTCAUTHKEYTYPE_OOB 2

dim rc, uart$, stRsp$

//==

// Called after a pairing attempt

//==

function HandlerAuthReq(reqType)

Hash : 7457E8356F66DBB28887CA9D20C52348

Randomiser : 18B662B0E19A344E897E705FF4E986EF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

124

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 if reqType == EBTCAUTHKEYTYPE_OOB then

 // We got a passkey request, send the passkey here

 print "Got an OOB request."

 print "Please set the hash and randomiser followed by a carriage return\n"

 print "> "

 endif

endfunc 1

//==

// Called after data has been recieved via Uart

//==

function HandlerUartRx()

 dim nMatch, oobHash$, oobRand$

 // read UART data until carriage return and save it into stRsp$

 nMatch=UartReadMatch(stRsp$,13)

 if nMatch!=0 then

 // Get the hash and randomiser from the input string

 uart$ = strsplitleft$(stRsp$, nMatch)

 rc = ExtractStrToken(uart$,oobHash$)

 rc = ExtractStrToken(uart$,oobRand$)

 // Dehexize the data first

 oobHash$ = StrDeHexize$(oobHash$)

 oobRand$ = StrDeHexize$(oobRand$)

 // Submit oob data

 rc = BtcSecMngrOobKey(oobHash$, oobRand$)

 endif

endfunc 1

//==

// Called after receiving a pair response

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

125

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//==

function HandlerPairResp(res)

 if res == 0 then

 print "Successfully paired\n"

 endif

endfunc 1

//--

// Enable synchronous event handlers

//--

OnEvent EVBTC_AUTHREQ call HandlerAuthReq

OnEvent EVBTC_PAIR_RESULT call HandlerPairResp

OnEvent EVUARTRX call HandlerUartRx

// Set device to be pairable and connectable

rc = BtcSetPairable(1)

rc = BtcSetConnectable(1)

// Specify that the oob data is available

rc = BtcSecMngrOobPref(1)

print "Waiting for authentication request\n"

WAITEVENT

Expected output:

BtcSecMngrIoCap

FUNCTION

This function sets the user I/O capability for subsequent pairings and is used to determine if the pairing is
authenticated. This is related to Simple Secure Pairing as described in the following whitepapers:

https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

Waiting for authentication request

Got an OOB request.Please set the hash and randomiser followed by a carriage return

> 63F6E834009C368612724FBC3253DDE2 8311CD946F30C785DD7EA83038A5221D

Successfully paired

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

126

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

In addition, the Security Manager Specification in the core 4.0 specification Part H provides a full description.
You must be registered with the Bluetooth SIG (www.Bluetooth.org) to get access to all these documents.

An authenticated pairing is deemed to be one with less than 1 in a million probability that the pairing was
compromised by a MITM (Man-in-the-middle) security attack.

The valid user I/O capabilities are as described below.

BTCSECMNGRIOCAP (nIoCap)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nIoCap

byVal nIoCap AS INTEGER.
The user I/O capability for all subsequent pairings.

0 None; also known as Just Works (unauthenticated pairing)

1 Display with Yes/No input capability (authenticated pairing)

2 Keyboard Only (authenticated pairing)

3 Display Only (authenticated pairing – if other end has input cap)

Example:

dim rc

//==

// Called after receiving a pair response

//==

function HandlerPairResp(res)

 if res == 0 then

 print "Successfully paired\n"

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

OnEvent EVBTC_PAIR_RESULT call HandlerPairResp

// Set device to be connectable and pairable

rc = BtcSetPairable(1)

rc = BtcSetConnectable(1)

// Set default action to JustWorks so that we don't get EVBTC_AUTHREQ event

rc = BtcSecMngrJustWorksConf(0)

// Set IO capability as Just Works

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://www.bluetooth.org/

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

127

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

rc = BtcSecMngrIoCap(0)

print "Waiting for authentication request\n"

WAITEVENT

Expected Output:

See also examples for BtcSecMngrPasskey() and BtcPair().

Miscellaneous Functions

Events and Messages

EVBTC_DISCOV_TIMEOUT

This event is thrown when the module is no longer discoverable. This will be after the time specified with
BtcSetDiscoverable(), otherwise it will be after the default value of 60 seconds.

See example given for BtcSetDiscoverable().

EVBTC_REMOTENAME_RECEIVED

This event is thrown when the module receives a response to a BtcQueryRemoteFriendlyName command, after
this event has been received the values can be read by issuing BtcGetRemoteFriendlyName.

EVBTC_MODE_CHANGE

This message from the LMP indicates that a link has changed its power mode. The mode change must be
queried with BtcQueryModeChange to return the address of the device that is associated with that link. Status
returns 0 on success. On a non-zero value, the link mode parameter is invalid.

EVBTC_SNIFF_SUBRATING

This message from the LMP indicates that a link has changed its sniff subrating parameters. The mode change
must be queried with BtcQuerySniffSubrating to return the address of the device that is associated with that
link. Status returns 0 on success.

BtcTxPowerSet

FUNCTION

This function does not exist; its sole purpose in this manual is to draw attention the following note.

Bluetooth Core specification Volume 2, Part C, Section 4.1.3, Power Control describes the LMP dynamic power
ranging method employed by the BT900. As such, when link quality varies the transmission power used ranges

Waiting for authentication request

Successfully paired

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

128

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

up and down to try and achieve a consistent link quality. It is therefore counter intuitive to allow setting of an
arbitrary transmit power for Classic, unlike BLE.

BtcSetPNPInformation

FUNCTION

Sets the PNP information in the SDP record.

BTCSETPNPINFORMATION(IDSrc, VendorID, ProductID, Version, description)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

IDSrc

byVAL IDSrc AS INTEGER

Identifies the source of the Vendor ID field, 1 Bluetooth SIG assigned Company Identifier, 2 USB
Implementor Forum assigned VID.

VendorID
byVAL VendorID AS INTEGER

Identifies the product vendor from the namespace in the Vendor ID Source.

ProductID
byVAL ProductID AS INTEGER

Manufacturer managed identifier for this product

Version
byVAL Version AS INTEGER

Manufacturer managed version for this product

description$
byREF description$ AS STRING
Service description string.

Example:

//Example :: BtcSetPNPInformation.sb

// Device settings

#define DEVICE_VID_SRC 0x2

#define DEVICE_VID 0x0077

#define DEVICE_PID 0x1234

#define DEVICE_VERSION 0x1

dim rc, devName$

devName$ = "BT900 BTC"

// Set the PNP information

rc = BtcSetPNPInformation(DEVICE_VID_SRC, DEVICE_VID, DEVICE_PID, DEVICE_VERSION, devName$)

if rc == 0 then

 print "PNP information set successfully\n"

else

 print "Failed to set PNP information\n"

endif

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

129

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BtcGetBDAddrFromHandle

FUNCTION

This function is used to get the Bluetooth address of the remote Bluetooth device given by the connection
handle.

BTCGETBDADDRFROMHANDLE (connHandle, strBDAddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

connHandle
byREF connHandle AS INTEGER
Handle of the connection from which to obtain the Bluetooth address

strBDAddr$
byREF strBDAddr$ AS STRING
On return, this string contains the Bluetooth address of the device on the other end of the
connection

See example for BtcGetHandleFromBDAddr.

BtcGetHandleFromBDAddr

FUNCTION

This function is used to obtain the connection handle of the remote Bluetooth device with the given Bluetooth
address.

BTCGETHANDLEFROMBDADDR (strBDAddr$, connHandle)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strBDAddr$
byREF strBDAddr$ AS STRING
Bluetooth address of the device on the other end of the connection for which you want to obtain
the handle.

connHandle
byREF connHandle AS INTEGER

On return, this integer contains the connection handle.

Example:

dim rc, hPort, n$, a$

function HandlerSppCon(hConn, result) as integer

 dim addr$, len

 print "\n --- Connect : ",hConn

 print "\nResult: ",integer.h' result

PNP information set successfully

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

130

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc=BtcGetBDAddrFromHandle(hConn, addr$)

 if rc==0 then

 print "\nConnected to device: "; StrHexize$(addr$)

 dim h

 rc=BtcGetHandleFromBDAddr(addr$, h)

 print "\nConnection Handle obtained from BT Address: ";h

 else

 print "\nError obtaining Bluetooth address: "; integer.h'rc

 endif

 rc=BtcSppDisconnect(hConn)

endfunc 1

onevent EvSppConn call HandlerSppCon

rc=BtcSetConnectable(1)

rc=BtcSetDiscoverable(1,60)

rc=BtcSppOpen(hPort)

rc=BtcGetFriendlyName(n$)

a$ = SysInfo$(4)

print "\n";n$;" : ";StrHexize$(a$)

print "\nModule is Discoverable. Make an SPP connection\n"

waitevent

Expected Output:

LAIRD BT900 : 000016A4093A5F

Module is Discoverable. Make an SPP connection

 --- Connect : 40449

Result: 00000000

Connected to device: 0016A4093A92

Connection Handle obtained from BT Address: 40449

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

131

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BLE EXTENSIONS BUILT-IN ROUTINES

Bluetooth Address

To address privacy concerns, there are four types of Bluetooth addresses in a BLE device which can change as
often as required. For example, an iPhone regularly changes its BLE Bluetooth address and it always exposes
only its resolvable random address.

To manage this, the usual six octet Bluetooth address is qualified on-air by a single bit which qualifies the
Bluetooth address as public or random:

 Public – The format is as defined by the IEEE organisation.
 Random – The format can be up to three types and this qualification is done using the upper two bits of the

most significant byte of the random Bluetooth address.

The exact details and format of how the specification requires this to be managed is not relevant for the
purpose of how BLE functionality is exposed in this module. Only how various API functions in smartBASIC
expect Bluetooth addresses are provided is explained.

Where a Bluetooth address is expected as a parameter (or provided as a response) it is always a STRING
variable. This variable is seven octets long where the first octet is the address type and the other six octets are
the usual Bluetooth address in big endian format (the most significant octet of the address is at offset 1),
whether public or random.

Address types:

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal

For example, to specify a public address which has the Bluetooth potion as 112233445566, then the STRING
variable shall contain seven octets (00112233445566) and a variable can be initialised using a constant string by
escaping as follows:

DIM addr addr=”\00\11\22\33\44\55\66”

Static random address 01C12233445566 (upper 2 bits of Bluetooth portion == 11)

Resolvable random address 02412233445566 (upper 2 bits of Bluetooth portion ==01)

Non-resolvable address 03112233445566 (upper 2 bits of Bluetooth portion ==00)

Note: The Bluetooth address portion in smartBASIC is always in big endian format. If you sniff on-air packets,
the same six packets appear in little endian format, hence reverse order – and you don’t see seven
bytes, but a bit in the packet somewhere which specifies it to be public or random.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

132

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleSetAddressType

FUNCTION

This functions sets the current address type to be used by the LE radio scan/advert/connection requests. Type 2
and 3 are freshly generated everytime this function is called.

If local IRK not available then no change and an error is returned.

BLESETADDRESSTYPE(nAddrType)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nAddrType

byVal nAddrType AS INTEGER.
Specifies the type of the LE address as follows:

0 Public address, same as Classic.

1 Random static address, generated first boot.

2 Random address, resolvable with IRK, generated on call.

3 Random address, non resolvable, generated on call

Example:

DIM rc

rc = BleSetAddressType(1)

PRINT "\nrc = ";rc

Expected Output:

Events and Messages

EVBLE_ADV_TIMEOUT

This event is thrown when adverts that are started using BleAdvertStart() time out.

Example:

 //Example :: EvBle_Adv_Timeout.sb (See in BT900CodeSnippets.zip)

 DIM peerAddr$

 //handler to service an advert timeout

 FUNCTION HndlrBleAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 //DbgMsg("\n - could use SystemStateSet(0) to switch off")

 //--

rc = 0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

133

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 // Switch off the system - requires a power cycle to recover

 //--

 // rc = SystemStateSet(0)

 ENDFUNC 0

 //start adverts

 //rc = BleAdvertStart(0,"",100,5000,0)

 IF BleAdvertStart(0,peerAddr$,100,2000,0)==0 THEN

 PRINT "\n Advert Started"

 ELSE

 PRINT "\n\nAdvert not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBleAdvTimOut

 WAITEVENT

Expected Output:

EVBLE_CONN_TIMEOUT

This event is thrown when a BLE connection attempt initiated by the BleConnect() function times out.

See example for BleConnect.

EVBLE_ADV_REPORT

This event is thrown when an advert report is received whether successfully cached or not.

See example for BleScanGetAdvReport.

EVBLE_FAST_PAGED

This event is thrown when an advert report is received which is of type ADV_DIRECT_IND and the advert had a
target address (InitA in the spec) which matches the address of this module.

See example for BleScanGetPagerAddr.

EVBLE_SCAN_TIMEOUT

This event is thrown when a BLE scanning procedure initiated by the BleScanStart() function times out.

See example for BLESCANSTART.

Advert Started

Advert stopped via timeout

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

134

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVBLEMSG

The BLE subsystem is capable of informing a smartBASIC application when a significant BLE related event has
occurred and it does so by throwing this message (as opposed to an EVENT, which is akin to an interrupt and has
no context or queue associated with it).

The message contains two parameters:

 msgID – Identifies what event was triggered
 msgCtx – Conveys some context data associated with that event.

The smartBASIC application must register a handler function which takes two integer arguments to be able to
receive and process this message.

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it and, unless that
queue is full, pends all messages until they are handled. Only messages that have handlers associated
with them are inserted into the queue. This prevents messages that will not get handled from filling
that queue. The following table lists the triggers and associated context parameters.

MsgID Description

0 A BLE connection is established and msgCtx is the connection handle.

1 A BLE disconnection event and msgCtx identifies the handle.

4 A BLE Service Error. The second parameter contains the error code.

9 Pairing in progress and displayed Passkey supplied in msgCtx.

10 A new bond has been successfully created.

11 Pairing in progress and authentication key requested. msgCtx is key type.

14 Connection parameters update and msgCtx is the conn handle.

15 Connection parameters update fail and msgCtx is the conn handle.

16 Connected to a bonded master and msgCtx is the conn handle.

17 A new pairing has replaced old key for the connection handle specified.

18 The connection is now encrypted and msgCtx is the conn handle.

20 The connection is no longer encrypted and msgCtx is the conn handle

21 The device name characteristic in the GAP service of the local GATT table has been written by
the remote GATT client.

22 Attempt to add a new bonding to the bonding database failed

23 On a BLE connection to a bonded device, if the current GATT table schema does not match what
existed at the last connection, then a GATT Service Change Indication is automatically sent and
the app is informed via this event

24 On a BLE connection to a bonded device, if the current GATT table schema does not match what
existed at the last connection, then a GATT Service Change Indication is automatically sent and
the app is informed when the client acknowledges that indication

Note: Message ID 13 is reserved for future use.

Example:

//Example :: EvBleMsg.sb (See in BT900CodeSnippets.zip)

DIM addr$: addr$=""

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

135

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

DIM rc

//==

// This handler is called when there is a BLE message

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nBLE Connection ";nCtx

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 CASE 18

 PRINT "\nConnection ";nCtx;" is now encrypted"

 CASE 16

 PRINT "\nConnected to a bonded master"

 CASE 17

 PRINT "\nA new pairing has replaced the old key";

 CASE ELSE

 PRINT "\nUnknown Ble Msg"

 ENDSELECT

ENDFUNC 1

FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

ENDFUNC 0

FUNCTION HndlrUartRx()

 rc=BleAdvertStop()

 PRINT "\nExiting..."

ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

ONEVENT EVUARTRX CALL HndlrUartRx

// start adverts

IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

136

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\nPress any key to exit\n"

ELSE

 PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output (When connection made with the module):

Expected Output (When no connection made):

EVDISCON

This event is thrown when there is a BLE disconnection. It comes with two parameters:

 Connection handle
 The reason for the disconnection.

The reason, for example, can be 0x08 which signifies a link connection supervision timeout which is used in the
Proximity Profile.

A full list of Bluetooth HCI result codes for the reason of disconnection is provided in this document here.

Example:

 //Example :: EvDiscon.sb (See in BT900CodeSnippets.zip)

 DIM addr$: addr$=""

Adverts Started

Press any key to exit

BLE Connection 3634

Connected to a bonded master

Connection 3634 is now encrypted

A new pairing has replaced the old key

Disconnected 3634

Exiting...

Adverts Started

Press any key to exit

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

137

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 IF nMsgID==0 THEN

 PRINT "\nNew Connection ";nCtx

 ENDIF

 ENDFUNC 1

 FUNCTION Btn0Press()

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION HndlrDiscon(BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

 PRINT "\nConnection ";hConn;" Closed: 0x";nRsn

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 // start adverts

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

EVCONNPARAMREQ

This event is thrown when a peripheral requests an update to the connection parameters. The user must turn
manual parameter control on to receive this message by using BleConnectConfig(8,1). In this case autoaccept is
disabled and full control is given to the user.

The parameters given are: Conn_handle, Interval_Min, Interval_Max, Supervision_Timeout, Slave_Latency.

Adverts Started

New Connection 2915

Connection 2915 Closed: 0x19

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

138

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVCHARVALEX

This event is thrown when a characteristic is written to by a remote GATT client and the config key 51 is set to 1
(not default). It comes with four parameters:

 Characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

 Offset
 Length of the data from the characteristic value
 The new characteristic value data as a string variable

Please note: The event messages EVCHARVAL and EVCHARVALEX are mutually exclusive and controlled via the
new non-volatile config key 51. The config key can be changed in command mode using “AT+CFG 51 nn” or in run
mode using the functions NvCfgKeyGet()/NvCfgKeySet(). The use of NvCfgKeyGet/Set is recommended in your
application as that eliminates an extra step of configuring the module in your end device production. See the
example below.

Example:

DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, kv, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

 //Enable Strings in Event messages

 rc=NvCfgKeyGet(51,kv)

 IF rc==0 THEN

 IF kv==0 THEN

 rc = NvCfgKeySet(51,1)

 IF rc==0 THEN

 Reset(0)

 ELSE

 PRINT "\nFailed to update config key 51"

 ENDIF

 ENDIF

 ELSE

 PRINT "\nOld firmware, Key 51 could not be read"

 ENDIF

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

139

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HandlerCharValEx(BYVAL charHandle, BYVAL offset, BYVAL len, BYVAL data$)

 DIM s$

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

140

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 IF charHandle == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from offset ";offset

 PRINT "\nNew Char Value: ";strhexize$(data$)

 ENDIF

 CloseConnections()

 ENDFUNC 1

 ONEVENT EVCHARVALEX CALL HandlerCharValEx

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nThe characteristic's value is ";at$

 PRINT "\nWrite a new value to the characteristic\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

EVCHARVAL

This event is thrown when a characteristic is written to by a remote GATT client and the config key 51 is set to 0
(default). It comes with three parameters:

 Characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

 Offset
 Length of the data from the characteristic value

The characteristic’s value is Hi

Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset 0

New Char Value: Hello

--- Disconnected from client

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

141

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

 //Example :: EvCharVal.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

142

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HandlerCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from offset ";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 CloseConnections()

 ENDFUNC 1

 ONEVENT EVCHARVAL CALL HandlerCharVal

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nThe characteristic's value is ";at$

 PRINT "\nWrite a new value to the characteristic\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

143

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one
parameter:

 The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

Example:

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two
parameters:

 The characteristic handle returned when the characteristic was registered with BleCharCommit()
 The new 16-bit value in the updated CCCD attribute

Example:

 //Example :: EvCharCccd.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

The characteristic’s value is Hi

Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset 0

New Char Value: Hello

--- Disconnected from client

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

144

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 DIM svcUuid : svcUuid=0x18EE

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(0,0,20,1,metaSuccess)

 DIM hSvcUuid : hSvcUuid = BleHandleUuid16(svcUuid)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Create service

 rc=BleServiceNew(1,hSvcUuid,hSvc)

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x20,charUuid,charMet,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

145

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDIF

 ENDFUNC 1

 //==

 // Indication acknowledgement from client handler

 //==

 FUNCTION HndlrCharHvc(BYVAL charHandle AS INTEGER) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT "\nGot confirmation of recent indication"

 ELSE

 PRINT "\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 1

 //==

 // Called when data received via the UART

 //==

 FUNCTION HndlrUartRx() AS INTEGER

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x02 THEN

 PRINT "\nIndications have been enabled by client"

 value$="hello"

 IF BleCharValueIndicate(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to indicate new value"

 ENDIF

 ELSE

 PRINT "\nIndications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

146

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARHVC CALL HndlrCharHvc

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVUARTRX CALL HndlrUartRx

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$

 PRINT "\nYou can write to the CCCD characteristic."

 PRINT "\nThe BT900 will then indicate a new characteristic value\n"

 PRINT "\n--- Press any key to exit"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two
parameters:

 The characteristic handle that is returned when the characteristic is registered using the function
BleCharCommit()

 The new 16-bit value in the updated SCCD attribute

Value of the characteristic 1346437121 is: Hi

You can write to the CCCD characteristic.

The BT900 will then indicate a new characteristic value

--- Press any key to exit

--- Connected to client

Indications have been enabled by client

Got confirmation of recent indication

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

147

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

The SCCD is used to manage broadcasts of characteristic values.

Example:

 //Example :: EvCharSccd.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc,chVal$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$,rc2

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,1,20,1,rc)

 //Create service

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise broadcast capable, readable, writeable

 rc=BleCharNew(0x0B,BleHandleUuid16(1),charMet,0,BleAttrMetadata(1,1,1,0,rc2))

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Broadcast characterstic value

 //==

 FUNCTION PrepAdvReport()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

148

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 dim adRpt$, scRpt$, svcDta$

 //initialise new advert report

 rc=BleAdvRptinit(adRpt$, 2, 0, 0)

 //encode service UUID into service data string

 rc=BleEncode16(svcDta$, 0x18EE, 0)

 //append characteristic value

 svcDta$ = svcDta$ + chVal$

 //append service data to advert report

 rc=BleAdvRptAppendAD(adRpt$, 0x16, svcDta$)

 //commit new advert report, and empty scan report

 rc=BleAdvRptsCommit(adRpt$, scRpt$)

 ENDFUNC rc

 //==

 // Reset advert report

 //==

 FUNCTION ResetAdvReport()

 dim adRpt$, scRpt$

 //initialise new advert report

 rc=BleAdvRptinit(adRpt$, 2, 0, 20)

 //commit new advert report, and empty scan report

 rc=BleAdvRptsCommit(adRpt$, scRpt$)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 dim addr$

 rc=BleAdvertStart(0,addr$,20,300000,0)

 IF rc==0 THEN

 PRINT "\nYou should now see the new characteristic value in the advertisment data"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

149

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDIF

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Called when data arrives via UART

 //==

 FUNCTION HndlrUartRx()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharSccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x01 THEN

 PRINT "\nBroadcasts have been enabled by client"

 IF PrepAdvReport()==0 THEN

 rc=BleDisconnect(conHndl)

 PRINT "\nDisconnecting..."

 ELSE

 PRINT "\nError Committing advert reports: ";integer.h'rc

 ENDIF

 ELSE

 PRINT "\nBroadcasts have been disabled by client"

 IF ResetAdvReport()==0 THEN

 PRINT "\nAdvert reports reset"

 ELSE

 PRINT "\nError Resetting advert reports: ";integer.h'rc

 ENDIF

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

150

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 FUNCTION HndlrCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 rc=BleCharValueRead(hMyChar,chVal$)

 PRINT "\nNew Char Value: ";chVal$

 ENDIF

 ENDFUNC 1

 //==

 // Called after a disconnection

 //==

 FUNCTION HndlrDiscon(hConn, nRsn)

 dim addr$

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARSCCD CALL HndlrCharSccd

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVCHARVAL CALL HndlrCharVal

 ONEVENT EVDISCON CALL HndlrDiscon

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,chVal$)

 PRINT "\nCharacteristic Value: ";chVal$

 PRINT "\nWrite a new value to the characteristic, then enable broadcasting.\nThe module will then

disconnect and broadcast the new characteristic value."

 PRINT "\n--- Press any key to exit\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

151

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

EVCHARDESC

This event is thrown when the client writes to writable descriptor of a characteristic which is not a CCCD or SCCD
as they are catered for with their own dedicated messages. It comes with two parameters, the first is the
characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit() and the second is an index into an opaque array of handles managed inside the characteristic
handle. Both parameters are supplied as-is as the first two parameters to the function BleCharDescRead().

Example:

 //Example :: EvCharDesc.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl, hOtherDescr

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup$()

 DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$, rc2

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,0,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise characteristic - readable

 rc=BleCharNew(0x02,BleHandleUuid16(1),charMet,0,0)

Characteristic Value: Hi

Write a new value to the characteristic, then enable broadcasting.

The module will then disconnect and broadcast the new characteristic value.

--- Press any key to exit

--- Connected to client

New Char Value: hello

Broadcasts have been enabled by client

Disconnecting...

--- Disconnected from client

You should now see the new characteristic value in the advertisment data

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

152

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //Add user descriptor - variable length

 attr$="my char desc"

 rc=BleCharDescUserDesc(attr$,BleAttrMetadata(1,1,20,1,rc2))

 //commit char initialised above, with initial value "char value" to service 'hSvc'

 attr2$="char value"

 rc=BleCharCommit(hSvc,attr2$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit(hSvc)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC attr$

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Called when data arrives via UART

 //==

 FUNCTION HndlrUartRx()

 ENDFUNC 0

 //==

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

153

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 // Client has written to writeable descriptor

 //==

 FUNCTION HndlrCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER) AS INTEGER

 dim duid,a$,rc

 IF hChar == hMyChar THEN

 rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$)

 IF rc ==0 THEN

 PRINT "\nNew value for desriptor ";hDesc;" with uuid ";integer.h'duid;" is ";a$

 ELSE

 PRINT "\nCould not read the descriptor value"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARDESC CALL HndlrCharDesc

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nOther Descriptor Value: ";OnStartup$()

 PRINT "\nWrite a new value \n--- Press any key to exit\n"

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

Other Descriptor Value: my char desc

Write a new value

--- Press any key to exit

--- Connected to client

New value for desriptor 0 with uuid FE012901 is hello

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

154

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT Client using a notify procedure (for example using
the function BleCharValueNotify()) or when a Write_with_no_response is sent by the GATT Client to a remote
server they are stored in temporary buffers in the underlying stack. There is finite number of these temporary
buffers and if they are exhausted the notify function or the write_with_no_resp command will fail with a result
code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute data is transmitted over the air, given there are no
acknowledges for Notify messages, the buffer is freed to be reused.

This event is thrown when at least one buffer has been freed and so the smartBASIC application can handle this
event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown because those messages have to be
confirmed by the client which results in a EVCHARHVC message to the smartBASIC application.
Likewise, writes which are acknowledged also do not consume these buffers.

Example:

 //Example :: EvNotifyBuf.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl,ntfyEnabled

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvc'

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

155

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 SUB SendData()

 DIM tx$, count

 IF ntfyEnabled then

 PRINT "\n--- Notifying"

 DO

 tx$="SomeData"

 rc=BleCharValueNotify(hMyChar,tx$)

 count=count+1

 UNTIL rc!=0

 PRINT "\n--- Buffer full"

 PRINT "\nNotified ";count;" times"

 ENDIF

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ELSEIF nMsgID THEN

 PRINT "\n--- Disconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 // Tx Buffer free handler

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

156

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //==

 FUNCTION HndlrNtfyBuf()

 SendData()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$,tx$

 IF charHandle==hMyChar THEN

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 ntfyEnabled=1

 tx$="Hello"

 rc=BleCharValueNotify(hMyChar,tx$)

 ELSE

 PRINT "\nNotifications have been disabled by client"

 ntfyEnabled=0

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BT900 will then send you data until buffer is full\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

157

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

Miscellaneous Functions

This section describes all BLE related functions that are not related to advertising, connection, security manager
or GATT.

BleTxPowerSet

FUNCTION

This function sets the power of all packets that are transmitted subsequently.

The actual value is determined in the radios internal power table and accepts values between 10 and -20 in 1dB
steps. At any time SYSINFO(2008) returns the actual transmit power setting (when in command mode, use the
command AT I 2008).

Although this function can accept any value between 10 and -20, the actual transmit power is determined by the
internal power table which supports -20, -16, -12, -8, -4, 0, 4 and 8 dBm. When a value is set, the highest
transmit power that is less than or equal to the desired power is used. SYSINFO(2008) and AT I 2008 will return
the power level set, and does not reflect the transmit power level of the radio itself.

BLETXPOWERSET(nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nTxPower
byVal nTxPower AS INTEGER.
Specifies the new transmit power in dBm units to be used for all subsequent tx packets.
The actual value is determined by the radios internal power table.

Example:

//Example :: BleTxPowerSet.sb (See in BT900CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPowerSet(dp)

You can connect and write to the CCCD characteristic.

The BT900 will then send you data until buffer is full

--- Connected to client

Notifications have been disabled by client : Notifications have been enabled by client

--- Notifying

--- Buffer full

Notified 1818505336 times

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

158

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

PRINT "\nrc = ";rc

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

dp=8 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=2 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-10 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-25 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-45 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-1000 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

Expected Output:

BleTxPwrWhilePairing

FUNCTION

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This mode
of pairing is referred to as Whisper Mode Pairing. The actual value is clipped to the transmit power for normal
operation which is set using BleTxPowerSet() function.

The actual value is determined in the radios internal power table and accepts values between 10 and -20 in 1dB
steps.

At any time SYSINFO(2018) returns the actual transmit power setting. Or when in command mode, uses the
command AT I 2018.

Although this function can accept any value between 10 and -20, the actual transmit power is determined by the
internal power table which supports -20, -16, -12, -8, -4, 0, 4 and 8 dBm, when a value is set the highest transmit
power that is less than or equal to the desired power is used. SYSINFO(2008) and AT I 2008 will return the power
level set, and does not reflect the transmit power level of the radio itself.

rc = 0

Tx power : desired= 1000 actual= 10

Tx power : desired= 8 actual= 8

Tx power : desired= 2 actual= 2

Tx power : desired= -10 actual= -10

Tx power : desired= -25 actual= -20

Tx power : desired= -45 actual= -20

Tx power : desired= -1000 actual= -20

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

159

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BLETXPWRWHILEPAIRING(nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nTxPower
byVal nTxPower AS INTEGER.
Specifies the new transmit power in dBm units to be used for all subsequent tx packets. The actual value
is determined by the radios internal power table.

Example:

//Example :: BleTxPwrWhilePairing.sb (See in BT900CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=8 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=2 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=-10 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-25 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-45 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

Expected Output:

rc = 0

Tx power while pairing: desired= 1000 actual= 10

Tx power while pairing: desired= 8 actual= 8

Tx power while pairing: desired= 2 actual= 2

Tx power while pairing: desired= -10 actual= -10

Tx power while pairing: desired= -25 actual= -20

Tx power while pairing: desired= -45 actual= -20

Tx power while pairing: desired= -1000 actual= -20

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

160

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleGetConnHandleFromAddr

FUNCTION

This function is used to get the connection handle from a specified Bluetooth address.

BLEGETCONNHANDLEFROMADDR(macAddrBE$, nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

macAddrBE$
byRef macAddrBE$ AS STRING.
The Bluetooth address of the connected remote device.

nConnHandle
byRef nConnHandle AS INTEGER.
Returned connection handle.

Example:

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart(0, 0)

IF rc==0 THEN

 PRINT "\nScanning"

ELSE

 PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received

FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Connect to device with MAC address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

ENDFUNC 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

161

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

'//This handler will be called in the event of a connection timeout

FUNCTION HndlrConnTO()

 PRINT "\n--- Connection timeout"

 rc=BleScanStart(0, 0)

ENDFUNC 1

'//This handler will be called when there is a BLE message

FUNCTION HndlrBleMsg(nMsgId, nCtx)

 IF nMsgId == 0 THEN

 dim h

 rc=BleGetConnHandleFromAddr(periphAddr$, h)

 PRINT "\n--- Connected to device with MAC address "; StrHexize$(periphAddr$);" Handle:

";h

 PRINT "\n--- Disconnecting now"

 rc=BleDisconnect(nCtx)

 ENDIF

ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon(nCtx, nRsn)

ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

--- Connected to device with MAC address 000016A4093A64 Handle: 261888

--- Disconnecting now

00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

162

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleGetAddrFromConnHandle

FUNCTION

This function is used to get the Bluetooth address of a device from a connection handle.

BLEGETADDRFROMCONNHANDLE(nConnHandle, macAddrBE$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byRef nConnHandle AS INTEGER.
Connection handle from which to get Bluetooth address

macAddrBE$
byRef macAddrBE$ AS STRING.
Returned Bluetooth address.

Example:

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart(0, 0)

IF rc==0 THEN

 PRINT "\nScanning"

ELSE

 PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received

FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Connect to device with MAC address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

ENDFUNC 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

163

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

'//This handler will be called in the event of a connection timeout

FUNCTION HndlrConnTO()

 PRINT "\n--- Connection timeout"

 rc=BleScanStart(0, 0)

ENDFUNC 1

'//This handler will be called when there is a BLE message

FUNCTION HndlrBleMsg(nMsgId, nCtx)

 IF nMsgId == 0 THEN

 dim addr$

 rc=BleGetAddrFromConnHandle(nCtx,addr$)

 PRINT "\n--- Connected to device with MAC address "; StrHexize$(addr$)

 PRINT "\n--- Disconnecting now"

 rc=BleDisconnect(nCtx)

 ENDIF

ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon(nCtx, nRsn)

ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

--- Connected to device with MAC address 000016A4093A64

--- Disconnecting now

00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

164

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Advertising Functions

This section describes all the advertising-related routines.

An advertisement consists of a packet of information with a header identifying it as one of four types along with
an optional payload that consists of multiple advertising records, referred to as AD in the rest of this manual.

Each AD record consists of up to three fields:

 Field 1 – One octet in length and indicates the number of octets that follow it that belong to that record.
 Field 2 – One octet in length and is a tag value which identifies the type of payload that starts at the next

octet. Hence the payload data is ‘length – 1’.
 Field 3 – A special NULL AD record that consists of one field (the length field) when it contains only the 00

value.

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which contains the latest list of all
AD records. You must register as at least an Adopter, which is free, to gain access to this information. It is
available at https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BleAdvertStart

FUNCTION

This function causes a BLE advertisement event as per the Bluetooth Specification. An advertisement event
consists of an advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is
initialised, created, and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT
functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_IND), then the peerAddr$ string must not be
empty and should be a valid address. When advertising with this packet type, the timeout is automatically set to
1280 ms.

Note: Whitelist functionality is not currently supported and will be implemented in future releases of the
firmware.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack
so that only those bonded masters result in scan and connection requests being serviced.

BLEADVERTSTART (nAdvType,peerAddr$,nAdvInterval, nAdvTimeout, nFilterHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
If a 0x6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in the
advertising report is set for Limited and/or General Discoverability. The solution is to resubmit a new
advert report which is made up so that the nFlags argument to BleAdvRptInit() function is 0.
The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement see Volume
3, Sections 9.2.3.2 and 9.2.4.2.

Arguments:

nAdvType

byVal nAdvType AS INTEGER.
Specifies the advertisement type as follows:

0 ADV_IND Invites connection requests

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

165

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

1 ADV_DIRECT_IND Invites connection from addressed device

2 ADV_SCAN_IND Invites scan request for more advert data

3 ADV_NONCONN_IND Does not accept connections/active scans

peerAddr$

byRef peerAddr$ AS STRING
It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.
This is only required when nAdvType == 1. When not empty, a valid address string is exactly seven octets
long (for example: \00\11\22\33\44\55\66) where the first octet is the address type and the rest of the
six octets is the usual Bluetooth address in big endian format (so the most significant octet of the
address is at offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal.

nAdvInterval

byVal nAdvInterval AS INTEGER.
The interval between two advertisement events (in milliseconds).
An advertisement event consists of a total of three packets being transmitted in the three advertising
channels.
The range of this interval is between 20 and 10240 milliseconds. When using ADV_NONCONN_IND or
ADV_SCAN_IND advert types the advertising interval must be atleast 100ms.

nAdvTimeout

byVal nAdvTimeout AS INTEGER.
The time after which the module stops advertising (in milliseconds). The range of this value is between 0
and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).
A value of 0 means disable the timeout, but note that if limited advert modes was specified in
BleAdvRptInit() then this function fails. When the advert type specified is ADV_DIRECT_IND , the timeout
is automatically set to 1280 ms as per the Bluetooth Specification.
WARNING: To save power, do not mistakenly set this to e.g. 100ms.

nFilterHandle
byVal nFilterHandle AS INTEGER.
Specifies the whitelist handle to use with advertising, passing 0 will disable the use of whitelist.

Example:

 //Example :: BleAdvertStart.sb (See in BT900CodeSnippets.zip)

 DIM addr$: addr$=""

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 //The advertising interval is set to 25 milliseconds. The module will stop

 //advertising after 60000 ms (1 minute)

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started"

 PRINT "\nIf you search for Bluetooth devices on your device, you should see 'Laird BT900'"

 ELSE

 PRINT "\n\nAdvertisement not successful"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

166

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 WAITEVENT

Expected Output:

BleAdvertStop

FUNCTION

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments None

Example:

 //Example :: BleAdvertStop.sb (See in BT900CodeSnippets.zip)

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press()

 IF BleAdvertStop()==0 THEN

 PRINT "\nAdvertising Stopped"

 ELSE

 PRINT "\n\nAdvertising failed to stop"

 ENDIF

 PRINT "\nExiting..."

 ENDFUNC 0

Adverts Started

If you search for Bluetooth devices on your device, you should see 'Laird BT900'

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

167

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started. Press button 0 to stop.\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 rc = GpioSetFunc(16,1,2)

 rc = GpioBindEvent(0,16,1)

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 WAITEVENT

Expected Output:

BleAdvertConfig

FUNCTION

This function is used to modify the default parameters that are used when initiating an advertise operation using
BleAdvertStart().

The following lists the default values for the parameters:

Advert Channel Mask Bit field detailing the channels to advertise on.

Note: Set channel mask Bit 0 to enable advert channel 0, Bit 1 to enable advert channel 1, and Bit 2 to
enable advert channel 2.

BLEADVERTCONFIG (configID,configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

configID

byVal configID AS INTEGER.

This identifies the value to update as follows:

0 Unused

1 Unused

2 Unused

3 Advert Channel Mask

For all other configID values the function returns an error.

configValue byVal configValue AS INTEGER.

Adverts Started. Press button 0 to stop.

Advertising Stopped

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

168

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

This contains the new value to set in the parameters indentified by configID.

BleAdvRptInit

FUNCTION

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records) and
store it the string specified. It is not advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT(advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

advRpt$
byRef advRpt$ AS STRING.

This contains an advertisement report.

nFlagsAD

byVal nFlagsAD AS INTEGER.

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set for
general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0. Bits 3 to 7
are reserved for future use by the BT SIG and must be set to 0.

nAdvAppearance

byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as follows:

0 Omit appearance advert

1
Add appearance advert as specified in the GAP service which is supplied via the
BleGapSvcInit() function

nMaxDevName

byVal nMaxDevName AS INTEGER.

The n leftmost characters of the device name specified in the GAP service. If this value is set to
zero (0) then the device name is not included.

Example:

 //Example :: BleAdvRptInit.sb (See in BT900CodeSnippets.zip)

 DIM advRpt$: advRpt$=""

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 IF BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)==0 THEN

 PRINT "\nAdvert report initialised"

 ENDIF

Expected Output:

Advert report initialised

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

169

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleScanRptInit

FUNCTION

This function is used to create and initialise a scan report which will be sent in a SCAN_RSP message. It will not
be used until BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT(scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

scanRpt
byRef scanRpt ASSTRING.
This contains a scan report.

Example:

 //Example :: BleScanRptInit.sb (See in BT900CodeSnippets.zip)

 DIM scnRpt$: scnRpt$=""

 IF BleScanRptInit(scnRpt$)==0 THEN

 PRINT "\nScan report initialised"

 ENDIF

Expected Output:

BleAdvRptGetSpace

FUNCTION

This function returns the free space in the advert advRpt$

BLEADVRPTGETSPACE(advRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

advRpt$
byRef advRpt$ AS STRING.

This contains an advert/scan report.

Example:

dim rc, s$, dn$

rc=BleScanRptInit(s$)

dn$ = BleGetDeviceName$()

'//Add device name to scan report

rc=BleAdvRptAppendAD(s$,0x09,dn$)

print "\nFree space in scan report: "; BleAdvRptGetSpace(s$); " bytes"

Scan report initialised

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

170

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleAdvRptAddUuid16

FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This consists
of all the 16 bit service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16 (advRpt, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

AdvRpt
byRef AdvRpt AS STRING.
The advert report onto which the 16-bit uuids AD record is added.

Uuid1
byVal uuid1 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to
-1 to have it ignored and then all further UUID arguments will also be ignored.

Uuid2
byVal uuid2 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to
-1 to have it ignored and then all further UUID arguments will also be ignored.

Uuid3
byVal uuid3 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to
-1 to have it ignored and then all further UUID arguments will also be ignored.

Uuid4
byVal uuid4 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to
-1 to have it ignored and then all further UUID arguments will also be ignored.

Uuid5
byVal uuid5 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to
-1 to have it ignored and then all further UUID arguments will also be ignored.

Uuid6
byVal uuid6 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to
-1 to have it ignored and then all further UUID arguments will also be ignored.

Example:

 //Example :: BleAdvAddUuid16.sb (See in BT900CodeSnippets.zip)

 DIM advRpt$, rc

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 rc = BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)

 //BatteryService = 0x180F

 //DeviceInfoService = 0x180A

 IF BleAdvRptAddUuid16(advRpt$,0x180F,0x180A, -1, -1, -1, -1)==0 THEN

Free space in scan report: 18 bytes

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

171

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\nUUID Service List AD added"

 ENDIF

 //Only the battery and device information services are included in the advert report

Expected Output:

BleAdvRptAddUuid128

FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified.
Given that an advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless there
is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

advRpt
byRef AdvRpt AS STRING.
The advert report into which the 128-bit UUID AD record is to be added.

nUuidHandle
byVal nUuidHandle AS INTEGER
This is handle to a 128-bit UUID which was obtained using a function such as
BleHandleUuid128() or some other function which returns one.

Example:

 //Example :: BleAdvAddUuid128.sb (See in BT900CodeSnippets.zip)

DIM uuid$, hUuidCustom

DIM tx$,scRpt$,adRpt$,addr$, hndl

 scRpt$=""

 PRINT BleScanRptInit(scRpt$)

//create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuidCustom = BleHandleUuid128(uuid$)

 //Advertise the 128 bit uuid in a scan report

 PRINT BleAdvRptAddUuid128(scRpt$, hUuidCustom)

 adRpt$=""

 PRINT BleAdvRptsCommit(adRpt$,scRpt$)

 addr$="" //because we are not doing a DIRECT advert

UUID Service List AD added

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

172

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT BleAdvertStart(0,addr$,20,30000,0)

Expected Output:

BleAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a
LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

AdvRpt
byRef AdvRpt AS STRING.

The advert report onto which the AD record is to be appended.

nTag
byVal nTag AS INTEGER

nTag should be in the range 0 to FF and is the TAG field for the record.

stData$

byRef stData$ AS STRING

This is an octet string which can be 0 bytes long. The maximum length is governed by the space
available in AdvRpt, a maximum of 31 bytes long.

Example:

 //Example :: BleAdvRptAppendAD.sb (See in BT900CodeSnippets.zip)

 DIM scnRpt$,ad$

 ad$="\01\02\03\04"

 PRINT BleScanRptInit(scnRpt$)

 IF BleAdvRptAppendAD(scnRpt$,0x31,ad$)==0 THEN //6 bytes will be used up in the report

 PRINT "\nAD with data '";ad$;"' was appended to the advert report"

 ENDIF

Expected Output:

00000

0

AD with data '\01\02\03\04' was appended to the advert report

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

173

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleAdvRptsCommit

FUNCTION

This function is used to commit one or both advert reports. If the string is empty then that report type is not
updated. Both strings can be empty. In that case, this call will have no effect.

The advertisements will not happen until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT(advRpt, scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

advRpt
byRef advRpt AS STRING.
The most recent advert report.

scanRpt
byRef scanRpt AS STRING.
The most recent scan report.

Note: If any one of the two strings is not valid then the call will be aborted without updating the other report
even if this other report is valid.

Tip: You can commit advert reports to update your advertisement data while advertising.

Example:

 //Example :: BleAdvRptsCommit.sb (See in BT900CodeSnippets.zip)

 DIM advRpt$: advRpt$=""

 DIM scRpt$: scRpt$=""

 DIM discovMode : discovMode = 0

 DIM advApprnce : advApprnce = 1

 DIM maxDevName : maxDevName = 10

 PRINT BleAdvRptInit(advRpt$, discovMode, advApprnce, maxDevName)

 PRINT BleAdvRptAddUuid16(advRpt$, 0x180F,0x180A, -1, -1, -1, -1)

 PRINT BleAdvRptsCommit(advRpt$, scRpt$)

 // Only the advert report will be updated.

Expected Output:

000

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

174

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Scanning Functions

When a peripheral advertises, the advert packet consists type of advert, address, RSSI, and some user data
information.

A central role device enters scanning mode to receive these advert packets from any device that is advertising.

For each advert that is received, the data is cached in a ring buffer, if space exists, and the EVBLE_ADV_REPORT
event is thrown to the smartBASIC application so that it can invoke the function BleScanGetAdvReport() to read
it.

The scan procedure ends when it times out (timeout parameter is supplied when scanning is initiated) or when
explicity instructed to abort or stop.

Note: While scanning for a long period of time, it is possible that a peripheral device is advertising for a
connection to it using the ADV_DIRECT_IND advert type. When this happens, it is good practice for the
central device to stop scanning and initiate the connection. To cater for this specific scenario, which
would normally require the central device to look out for that advert type and the self address, the
EVBLE_FAST_PAGED event is thrown to the application. This means that all the user app needs to do is
to install a handler for that event which stops the scan procedure and immediately starts a connection
procedure.

For more information about adverts see the section Advertising Functions.

BleScanStart

FUNCTION

This function is used to start a scan for adverts which may result in at least one of the following events being
thrown:

EVBLE_SCAN_TIMEOUT End of scanning

EVBLE_ADV_REPORT Advert report received

EVBLE_FAST_PAGED Peripheral inviting a connection to this module

 EVBLE_ADV_REPORT – Received when an advert has been successfully cached in a ring buffer. The handler
should call the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been
cached until the cache is empty, otherwise there is a risk that advert reports will be discarded. The output
parameter nDiscarded returns the number of discarded reports, if any.

 EVBLE_FAST_PAGED – Received when a peripheral has sent an advert with the address of this module. The
handler should stop scanning using BleScanStop() and then initiate a connection using BleConnect().

There are three parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise
default values are used:

 Scan Interval – Specify the duty cycle for listening for adverts. Default value: 80 milliseconds.
 Scan Window – Specify the duty cycle for listening for adverts. Default value: 40 milliseconds.
 Scan Type – Default scan type: Active

Active scanning means that for each advert received (if it is ADV_IND or ADV_DISCOVER_IND) a SCAN_REQ
is sent to the advertising device so that the data in the scan response can be appended to the data that has
already been received for the advert.

The values for these default parameters can be changed prior to invoking this function by calling the function
BleScanConfig() appropriately.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

175

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Note: Be aware that scanning is a memory intensive operation and so heap memory is used to manage a
cache. If the heap is fragmented, it is likely this function will fail with an appropriate resultcode
returned. If that happens, call reset() and then attempt the scan start again. The memory that is
allocated to manage this scan process is NOT released when the scanning times out. To force release
of that memory, we recommend that you start the scan and then immediately call BleScanStop().

 Connections may not be established during a scan operation. If a continued scan is required, stop the
scan or let it timeout, connect, then restart the scan.

BLESCANSTART (scanTimeoutMs, nFilterHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

scanTimeoutMs

byVAL scanTimeoutMs AS INTEGER.
The length of time in milliseconds the scan for adverts lasts. If the timer times out then the
event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application.
Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer is not
started and scanning can only be stopped by calling either BleScanAbort() or Ble ScanStop().

nFilterHandle
byVAL nFilterHandle AS INTEGER
Specifies the whitelist handle to use when scanning, passing 0 will disable the use of
whitelist.

Example:

 //Example :: BleScanStart.sb (See in BT900CodeSnippets.zip)

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 WAITEVENT

Expected Output:

Scanning

Scan timeout

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

176

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleScanAbort

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters as
there can only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The
value is a bit mask where:

 bit 0 is set if advertising is in progress
 bit 1 is set if there is already a connection in a peripheral role
 bit 2 is set if there is a current ongoing connection attempt
 bit 3 is set when scanning
 bit 4 is set if there is already a connection to a peripheral

There is also BleScanStop() which \ cancels an ongoing scan. The difference is that, by calling BleScanAbort(), the
memory that was allocated from heap by BleScanStart() is not released back to the heap. The scan manager
retains it for the next scan operation.

BLESCANABORT()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments None

Example:

 //Example :: BleScanAbort.sb (See in BT900CodeSnippets.zip)

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount()

 WHILE GetTickSince(startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo(2016) == 0x08 THEN

 PRINT "\nAborting scan"

 rc = BleScanAbort()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

177

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 IF SysInfo(2016) == 0 THEN

 PRINT "\nScan aborted"

 ENDIF

 ENDIF

Expected Output:

BleScanStop

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters, as
there can only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The
value is a bit mask where:

 bit 0 is set if advertising is in progress
 bit 1 is set if there is already a connection in a peripheral role
 bit 2 is set if there is a current ongoing connection attempt
 bit 3 is set when scanning
 bit 4 is set if there is already a connection to a peripheral

There is also BleScanAbort() which cancels an ongoing scan. The difference is that, by calling BleScanStop(), the
memory that was allocated from heap by BleScanStart() is released back to the heap. The scan manager must
reallocate the memory if BleScanStart() is called again.

BLESCANSTOP()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments None

Example:

 //Example :: BleScanStop.sb (See in BT900CodeSnippets.zip)

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

Scanning

Aborting scan

Scan aborted

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

178

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount()

 WHILE GetTickSince(startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo(2016) == 0x08 THEN

 PRINT "\nStop scanning. Freeing up allocated memory"

 rc = BleScanStop()

 IF SysInfo(2016) == 0 THEN

 PRINT "\nScan stopped"

 ENDIF

 ENDIF

Expected Output:

BleScanFlush

FUNCTION

This function is used to flush the ring buffer which stores incoming adverts which are later read.

BLESCANFLUSH()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments None

Example:

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

Scanning

Stop scanning. Freeing up allocated memory

Scan stopped

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

179

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount()

 WHILE GetTickSince(startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo(2016) == 0x08 THEN

 PRINT "\nAborting scan"

 rc = BleScanAbort()

 IF SysInfo(2016) == 0 THEN

 PRINT "\nScan aborted"

 ENDIF

 '//Free up memory

 rc = BleScanFlush()

 IF (rc == 0) THEN

 PRINT "\nScan results flushed."

 ENDIF

 ENDIF

Expected Output:

BleScanConfig

FUNCTION

This function is used to modify the default parameters that are used when initiating a scan operation using
BleScanStart().

The following lists the default values for the parametrers:

Scan Interval 80 milliseconds

Scan Window 40 milliseconds

Scan Type (Active/Passive) Active

Minimum Reports in Cache 4

Scanning

Aborting scan

Scan aborted

Scan results flushed.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

180

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Note: The default Scan Window and Interval give a 50% duty cycle. The 50% duty cycle attempts to ensure
that connection events for existing connections are missed as infrequently as possible.

BLESCANCONFIG (configID,configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

configID

byVal configID AS INTEGER.
This identifies the value to update as follows:

0 Scan Interval in milliseconds (range 0..10240)

1 Scan Window in milliseconds (range 0..10240)

2 Scan Type (0=Passive, 1=Active)

3 Advert Report Cache SIze
For all other configID values the function returns an error.

configValue
byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

Example:

//Example :: BleScanConfig.sb (See in BT900CodeSnippets.zip)

 DIM rc, startTick

 PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval

 PRINT "\nScan Window: "; SysInfo(2151) //get current scan window

 PRINT "\nScan Type: ";

 IF SysInfo(2152)==0 THEN //get current scan type

 PRINT "Passive"

 ELSE

 PRINT "Active"

 ENDIF

 PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

 PRINT "\n\nSetting new parameters..."

 rc = BleScanConfig(0, 100) //set scan interval to 100

 rc = BleScanConfig(1, 50) //set scan window to 50

 rc = BleScanConfig(2, 0) //set scan type to passive

 rc = BleScanConfig(3, 3) //set report cache size

 PRINT "\n\n--- New Parameters:"

 PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval

 PRINT "\nScan Window: "; SysInfo(2151) //get current scan window

 PRINT "\nScan Type: ";

 IF SysInfo(2152)==0 THEN //get current scan type

 PRINT "Passive"

 ELSE

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

181

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "Active"

 ENDIF

 PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

 Expected Output:

BleScanGetAdvReport

FUNCTION

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in
a queue buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the
handler for the EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the
number of adverts (all, not just from that peripheral) that have been discarded since the last time this function
was called and the RSSI value for that packet.

Note: The RSSI can be used to determine the closest device. However, due to fading and reflections, it is
possible that a device further away could result in a higher RSSI value.

BLESCANGETADVREPORT (periphAddr$, advData$, nDiscarded, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

periphAddr$
byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the advert.

advData$

byREF advData $ AS STRING

On return, this parameter is updated with the data payload of the advert which consists of multiple
AD elements.

Scan Interval: 80

Scan Window: 40

Scan Type: Active

Report Cache Size: 4

Setting new parameters..

--- New Parameters:

Scan Interval: 100

Scan Window: 50

Scan Type: Passive

Report Cache Size: 3

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

182

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nDiscarded

byREF nDiscarded AS INTEGER

On return, this parameter is updated with the number of adverts that were discarded because there
was no space in the internal queue.

nRssi

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.

Note: This code snippet was tested with another BT900 running the iBeacon app (see in
smartBASIC_Sample_Apps folder) on peripheral firmware.

 Example:

 //Example :: BleScanGetAdvReport.sb (See in BT900CodeSnippets.zip)

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(5000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM periphAddr$, advData$, nDiscarded, nRssi

 '//Read all cached advert reports

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 WHILE (rc == 0)

 PRINT "\n\nPeer Address: "; StrHexize$(periphAddr$)

 PRINT "\nAdvert Data: ";StrHexize$(advData$)

 PRINT "\nNo. Discarded Adverts: ";nDiscarded

 PRINT "\nRSSI: ";nRssi

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

183

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDWHILE

 PRINT "\n\n --- No more adverts in cache"

 ENDFUNC 1

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 WAITEVENT

Expected Output:

Scanning

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -97

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -97

 --- No more adverts in cache

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -92

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -92

 --- No more adverts in cache

Scan timeout

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

184

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleScanGetAdvReportEx

As with BleScanGetAdvReport but with a extra channel parameter, in the BT900 the channel is unknown and
always a constant ‘3’ value.

BLESCANGETADVREPORTEX (periphAddr$, advData$, nDiscarded, nRssi, nChannel)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

periphAddr$
byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the advert.

advData$

byREF advData $ AS STRING

On return, this parameter is updated with the data payload of the advert which consists of multiple
AD elements.

nDiscarded

byREF nDiscarded AS INTEGER

On return, this parameter is updated with the number of adverts that were discarded because there
was no space in the internal queue.

nRssi

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.

nChannel

byREF nChannel AS INTEGER

On return, this parameter is always ‘3’ for unknown as the BT900 does not have access to channel
information.

BleGetADbyIndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string which
is assumed to contain the data portion of an advert report, incoming or outgoing.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is malformed if
the length byte for that AD element suggests that more data bytes are required than actually exist in
the report string.

BLEGETADBYINDEX (nIndex, rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nIndex
byVAL nIndex AS INTEGER
This is a zero-based index of the AD element that is copied into the output data parameter
ADval$.

rptData$

byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which were either
constructed for an outgoing advert or were received in a scan (depends on module variant).

nADTag byREF nADTag AS INTEGER

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

185

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

When the nth index is found, the single byte tag value for that AD element is returned in this
parameter.

ADval$

byREF ADval$ AS STRING

When the nth index is found, the data excluding single byte the tag value for that AD element is
returned in this parameter.

Example:
 //Example :: BleAdvGetADbyIndex.sb (See in BT900CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 rc=BleGetADbyIndex(0, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nFirst AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 rc=BleGetADbyIndex(1, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 '//Will fail because there are only 2 AD elements

 rc=BleGetADbyIndex(2, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nThird AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

186

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte specified
from a string which is assumed to contain the data portion of an advert report, incoming or outgoing. If multiple
instances of that AD tag type are suspected, then use the function BleGetADbyIndex to extract.

Note: If the last AD element is malformed, then it is treated as not existing. For example, it is malformed if
the length byte for that AD element suggests that more data bytes are required than actually exist in
the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

rptData$
byREF rptData$ AS STRING.
This parameter is a string that contains concatenated AD elements which were either
constructed for an outgoing advert or were received in a scan (depends on module variant).

nADTag

byVAL nADTag AS INTEGER

This parameter specifies the single byte tag value for the AD element that is to returned in the
ADval$ parameter. Only the first instance can be catered for. If multiple instances are suspected,
then use BleAdvADbyIndex() to extract it.

ADval$

byREF ADval$ AS STRING

When the nth index is found, the data excluding single byte the tag value for that AT element is
returned in this parameter.

Example:

 //Example :: BleAdvGetADbyIndex.sb (See in BT900CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455

Second AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

187

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 nADTag = 0xDD

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 nADTag = 0xEE

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 nADTAG = 0xFF

 '//Will fail because no AD exists in 'fullAD$' with the tag 'FF'

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

Expected Output:

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455

AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

188

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleScanGetPagerAddr

FUNCTION3

When a scan is in progress after calling BleScanStart(), an EVBLE_FAST_PAGED event is thrown whenever an
ADV_DIRECT_IND advert is received with the address of this module, requesting a connection to it.

This function returns the address of the peripheral requesting a connection and the RSSI. It should be used in the
handler of the EVBLE_FAST_PAGED event to get the peripheral’s address. Scanning should then be stopped
using either BleScanAbort() or BleScanStop(). You can then use the address supplied by this function to connect
to the peripheral using BleConnect() if that is the desired use case. The Bluetooth specification does NOT
mandate a connection.

BLESCANGETPAGERADDR (periphAddr$, nRssi)
Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

periphAddr$
byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the advert.

nRssi

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.

Example:

 //Example :: BleScanGetPagerAddr.sb (See in BT900CodeSnippets.zip)

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(10000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 '//This handler will be called when an advert is received requesting a connection to this

module

FUNCTION HndlrFastPaged()

 DIM periphAddr$, nRssi

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

189

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc = BleScanGetPagerAddr(periphAddr$, nRssi)

 PRINT "\nAdvert received from peripheral "; StrHexize$(periphAddr$); " with RSSI ";nRssi

 PRINT "\nrequesting a connection to this module"

 rc = BleScanStop()

 ENDFUNC 0

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 ONEVENT EVBLE_FAST_PAGED CALL HndlrFastPaged

 WAITEVENT

Expected Output:

Connection Functions

This section describes all the connection manager-related routines.

The Bluetooth specification stipulates that a peripheral cannot initiate a connection but can perform
disconnections. Only Central Role devices are allowed to connect when an appropriate advertising packet is
received from a peripheral.

Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when there is a
connection or disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

MsgId Description

0 There is a connection and the context parameter contains the connection handle.

1 There is a disconnection and the context parameter contains the connection handle.

14 New connection parameters for connection associated with connection handle.

15 Request for new connection parameters failed for connection handle supplied.

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key

18 The connection is encrypted

20 The connection is no longer encrypted

Scanning

Advert received from peripheral 01D8CFCF14498D with RSSI -96

requesting a connection to this module

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

190

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleConnect

FUNCTION

This function is used to make a connection to a device in peripheral mode which is actively advertising.

Note: The peripheral device MUST be advertising with either ADV_IND or ADV_DIRECT_IND type of advert to
be able to successfully connect.

 The BT900 has a resolution of ms for the Supervision timeout and Intervals, if you specify a value
between whole ms it will be rounded.

When the connection is complete, a EVBLEMSG message with msgId = 0 and context containing the handle are
thrown to the smartBASIC runtime engine.

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

When a connection is attempted, there are other parameters that are used and the default values for those are
assumed; for example, scan window, scan interval, and periodicity. The default values for those can be changed
using the BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO()
command.

BLECONNECT (periphAddr$, connTimeoutMs, minConnIntUs,maxConnIntUs, nSuprToutUs)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

periphAddr$
byRef periphAddr$ AS STRING
The Bluetooth address of the device to connect to which MUST be properly formatted and is
exactly seven bytes long.

connTimeoutMs

byVal connTimeoutMs AS INTEGER.

The length of time in milliseconds that the connection attempt lasts. If the timer times out
then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

minConnIntUs
byVal minConnIntUs AS INTEGER.

The minimum connection interval in microseconds.

maxConnIntUs
byVal maxConnIntUs AS INTEGER.

The maximum connection interval in microseconds

nSuprToutUs
byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds.

Example:

 //Example :: BleConnect.sb (See in BT900CodeSnippets.zip)

 DIM rc, periphAddr$

 '//Scan indefinitely

 rc=BleScanStart(0, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

191

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Connect to device with Bluetooth address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 ENDFUNC 1

 '//This handler will be called in the event of a connection timeout

 FUNCTION HndlrConnTO()

 PRINT "\n--- Connection timeout"

 rc=BleScanStart(0, 0)

 ENDFUNC 1

 '//This handler will be called when there is a BLE message

 FUNCTION HndlrBleMsg(nMsgId, nCtx)

 IF nMsgId == 0 THEN

 PRINT "\n--- Connected to device with Bluetooth address "; StrHexize$(periphAddr$)

 PRINT "\n--- Disconnecting now"

 rc=BleDisconnect(nCtx)

 ENDIF

 ENDFUNC 1

 '//This handler will be called when a disconnection happens

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

192

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 FUNCTION HndlrDiscon(nCtx, nRsn)

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO

 WAITEVENT

Expected Output:

BleConnectCancel

FUNCTION

This function is used to cancel an ongoing connection attempt which has not timed out. It takes no parameters
as there can only be one attempt in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The
value is a bit mask where:

 bit 0 is set if advertising is in progress
 bit 1 is set if there is already a connection in a peripheral role
 bit 2 is set if there is a current ongoing connection attempt
 bit 3 is set when scanning
 bit 4 is set if there is already a connection to a peripheral

BLECONNECTCANCEL ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments None

Example:

//Example :: BleConnectCancel.sb (See in BT900CodeSnippets.zip)

 DIM rc, periphAddr$

 '//Scan indefinitely

 rc=BleScanStart(0, 0)

Scanning

--- Connecting

--- Connected to device with Bluetooth address 01D8CFCF14498D

--- Disconnecting now

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

193

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Wait until module stops scanning

 WHILE SysInfo(2016)==8

 ENDWHILE

 '//Connect to device with Bluetooth address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting \nCancel"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//Cancel current connection attempt

 rc=BleConnectCancel()

 PRINT "\n--- Connection attempt cancelled"

 ENDFUNC 0

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 WAITEVENT

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

194

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleConnectConfig

FUNCTION

This function is used to modify the default parameters that are used when attempting a connection using
BleConnect(). At any time they can be read by adding the configID to 2100 and then passing that value to
SYSINFO().

When connecting, the central device must scan for adverts and then, when the particular peer address is
encountered, it can send the connection message to that peripheral.

Therefore, a connection attempt requires the underlying stack API to be supplied with a scan interval and scan
window. In addition, when multiple connections are in place, the radio has to be shared as efficiently as
possible; one potential scheme is to have all connection parmeters being integer multiples of a ‘base’ value. For
the purpose of this documentation, this parameter is referred to as multi-link connection interval periodicity.

The following are the default settings for these parameters:

Multi-link Connection Interval Periodicity 30 milliseconds

Scan Interval 120 milliseconds

Scan Window 60 milliseconds

Slave Latency 0

Notes: The Scan Window and Interval are multiple integers of the periodicity (although not required to be).
The scanning has a 50% duty cycle. The 50% duty cycle attempts to ensure that connection events
for existing connections are missed as infrequently as possible.

The Scan Window and Interval are internally stored in units of 0.625 milliseconds slots so reading
back via SYSINFO() does not accurately return the value you set.

BLECONNECTCONFIG (configID,configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

configID

byVal configID AS INTEGER.
The following are the values to update:

0 Scan interval in milliseconds (range 0..10240)

1 Scan Window in milliseconds (range 0..10240)

2 Slave Latency (0..1000)

5 Multi-Link Connection Interval Periodicity (20..200)

6 Minimum connection length in ms

7 Maximum connection length in ms

8 Manual control of master connection parameters. 0 or 1.

Scanning

--- Connecting

Cancel

--- Connection attempt cancelled

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

195

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

For all other configID values, the function returns an error.

configValue
byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

Example:

 //Example :: BleConnectConfig.sb (See in BT900CodeSnippets.zip)

 DIM rc, startTick

 SUB GetParms()

 //get default scan interval for connecting

 PRINT "\nConn Scan Interval: "; SysInfo(2100);"ms"

 //get default scan window for connecting

 PRINT "\nConn Scan Window: "; SysInfo(2101);"ms”

 //get default slave latency for connecting

 PRINT "\nConn slave latency: "; SysInfo(2102)

 //get current multi-link connection interval periodicity

 PRINT "\nML Conn Interval Periodicity: "; SysInfo(2105);"ms"

 ENDSUB

 PRINT "\n\n--- Current Parameters:"

 GetParms()

 PRINT "\n\nSetting new parameters..."

 rc = BleConnectConfig(0, 60) //set scan interval to 60

 rc = BleConnectConfig(1, 13) //set scan window to 13 (will round to 12)

 rc = BleConnectConfig(2, 3) //set slave latency to 1

 rc = BleConnectConfig(5, 30) //set ML connection interval periodicity to 30

 PRINT "\n"; integer.h'rc

 PRINT "\n\n--- New Parameters:"

 GetParms()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

196

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete, a EVBLEMSG message with msgId = 1 and context containing the handle is
thrown to the smartBASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must be disconnected.

Example:

 //Example :: BleDisconnect.sb (See in BT900CodeSnippets.zip)

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nNew Connection ";nCtx

 rc = BleAuthenticate(nCtx)

 PRINT BleDisconnect(nCtx)

 CASE 1

--- Current Parameters:

Conn Scan Interval: 80ms

Conn Scan Window: 40ms

Conn slave latency: 0

ML Conn Interval Periodicity: 20ms

Setting new parameters...

--- New Parameters:

Conn Scan Interval: 60ms

Conn Scan Window: 12ms

Conn slave latency: 3

ML Conn Interval Periodicity: 30ms

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

197

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\nDisconnected ";nCtx;"\n"

 EXITFUNC 0

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF BleAdvertStart(0,addr$,100,30000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection parameters. For
example: interval, slave latency, and link supervision timeout.

When the request is complete, a EVBLEMSG message with msgId = 14 and context containing the handle are
thrown to the smartBASIC runtime engine if it is successful. If the request to change the connection parameters
fails, an EVBLEMSG message with msgid = 15 is thrown to the smartBASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must have the connection parameters changed.

nMinIntUs
byVal nMinIntUs AS INTEGER.
The minimum acceptable connection interval in microseconds.

nMaxIntUs
byVal nMaxIntUs AS INTEGER.
The maximum acceptable connection interval in microseconds.

nSuprToutUs
byVal nSuprToutUs AS INTEGER.
The link supervision timeout for the connection in microseconds. It should be greater than the slave
latency times that granted the connection interval.

Adverts Started

New Connection 35800

Disconnected 3580

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

198

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nSlaveLatency
byVal nSlaveLatency AS INTEGER.
The number of connection interval polls that the peripheral may ignore. This times the connection
interval shall not be greater than the link supervision timeout.

Note: The BT900 has a resolution of ms for the Supervision timeout and Intervals, if you specify a value
between whole ms it will be rounded.

 Slave latency is a mechanism that reduces power usage in a peripheral device and maintains short
latency. Generally, a slave reduces power usage by setting the largest connection interval possible.
This means the latency is equivalent to that connection interval. To mitigate this, the peripheral can
greatly reduce the connection interval and then have a non-zero slave latency.

 For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0. In this
case, key presses are reported to the central device once per second, a poor user experience. Instead,
the connection interval can be set to 50 msec, for example, and slave latency to 19. If there are no key
presses, the power use is the same as before because ((19+1) * 50) equals 1000. When a key is
pressed, the peripheral knows that the central device will poll within 50 msec, so it can send that
keypress with a latency of 50 msec. A connection interval of 50 and slave latency of 19 means the
slave is allowed to NOT acknowledge a poll for up to 19 poll messages from the central device.

Example:

 //Example :: BleSetCurConnParms.sb (See in BT900CodeSnippets.zip)

 DIM rc

 DIM addr$: addr$=""

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 DIM intrvl,sprvTo,sLat

 SELECT nMsgId

 CASE 0 //BLE_EVBLEMSGID_CONNECT

 PRINT "\n --- New Connection : ","",nCtx

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\nConn Interval","","",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency","",slat

 PRINT "\n\nRequest new parameters"

 //request connection interval in range 50ms to 75ms and link

 //supervision timeout of 4seconds with a slave latency of 19

 rc = BleSetCurconnParms(nCtx, 50000,75000,4000000,19)

 ENDIF

 CASE 1 //BLE_EVBLEMSGID_DISCONNECT

 PRINT "\n --- Disconnected : ",nCtx

 EXITFUNC 0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

199

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\n\nConn Interval",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency",slat

 ENDIF

 CASE 15 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL

 PRINT "\n ??? Conn Parm Negotiation FAILED"

 CASE ELSE

 PRINT "\nBle Msg",nMsgId

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BT900"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output (Unsuccessful Negotiation):

Adverts Started

Make a connection to the BT900

 --- New Connection : 1352

Conn Interval 7500

Conn Supervision Timeout 7000000

Conn Slave Latency 0

Request new parameters

 ??? Conn Parm Negotiation FAILED

 --- Disconnected : 1352

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

200

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output (Successful Negotiation):

Note: The first set of parameters differ depending on your central device.

BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the connection handle.
Given there are 3 connection parameters, the function takes three variables by reference so that the function
can return the values in those variables.

BLEGETCURCONNPARMS (nConnHandle, nIntervalUs, nSuprToutUs, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
Specifies the handle of the connection to read the connection parameters of

nIntervalUs
byRef nIntervalUs AS INTEGER.
The current connection interval in microseconds

nSuprToutUs
byRef nSuprToutUs AS INTEGER.
The current link supervision timeout in microseconds for the connection.

nSlaveLatency

byRef nSlaveLatency AS INTEGER.
The current number of connection interval polls that the peripheral may ignore. This value
multiplied by the connection interval will not be greater than the link supervision timeout.
Note: See Note on Slave Latency.

See previous example.

Adverts Started

Make a connection to the BT900

 --- New Connection : 134

Conn Interval 30000

Conn Supervision Timeout 720000

Conn Slave Latency 0

Request new parameters

New conn Interval 75000

New conn Supervision Timeout 4000000

New conn Slave Latency 19

--- Disconnected : 134

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

201

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleConnMngrUpdCfg

FUNCTION

This function is used to initialise the connection manager for slave/peripheral role. Setting all values to zero will
disable the retry statemachine for manual control.

BLECONNMNGRUPDCFG (nConnUpdateFirstDelay, nConnUpdateNextDelay, nConnUpdateMaxRetry)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

nConnUpdateFirstDelay
byVal nConnUpdateFirstDelay AS INTEGER.
In milliseconds 100 to 32000

nConnUpdateNextDelay
BYVAL nConnUpdateNextDelay AS INTEGER
In milliseconds 100 to 32000

nConnUpdateMaxRetry
BYVAL nConnUpdateMaxRetry AS INTEGER
In number of retries

Example:

dim rc

#define CONN_UPD_FIRST_DELAY 500

#define CONN_UPD_NEXT_DELAY 800

#define CONN_UPD_MAX_RETRY 8

rc=BleConnMngrUpdCfg(CONN_UPD_FIRST_DELAY, CONN_UPD_NEXT_DELAY, CONN_UPD_MAX_RETRY)

if rc == 0 then

 print "\nConnection manager successfully initialised"

else

 print "\nError: ";integer.h'rc

endif

Expected Output:

Whitelist Management Functions

This section describes routines which are used to manage whitelists.

A whitelist is a list of MAC addresses and Identity Resolving Keys (IRKs) which the baseband radio will use to gate
incoming packets upwards to the stack as they are received.

If the whitelist is active, then any radio packet who source mac address is not in the list will be rejected.
However, note that in BLE for privacy reasons, resolvable mac addresses can be used and so the address will not
match with one in the list and so for that type of address the list of Indentity Resolving Keys in the whitelist is
also consulted to see if the resolvable address is a trusted device.

Connection manager successfully initialised

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

202

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

A trusted device by definition will have supplied its IRK key when the pairing and bonding happened in the past.

Hence treat this group of functions as a means of creating, maintaining and destroying that list of addresses and
IRKS.

The operation that enables whitelisting is the function that starts advertising and scanning. So refer to the
functions BleAdvertStart() and BleScanStart(), although note that both these functions are only available
depending on the role capability.

Note: The BT900 currently does not resolve IRKs, it is advisable only to rely on filtering IEEE and Random
Static addresses.

BleWhitelistCreate

FUNCTION

This function is used to create a new whitelist to which addresses and identity resolving keys can be added using
BleWhitelistAddAddr() ot BleWhitelistAddIndex()

BLEWHITELISTCREATE(hWlist, nMaxAddrs, nMaxIrks, nPktFilterMask)

Returns

INTEGER, a result code.

Typical value:

0x0000 indicates a successful operation

0x605E indicates too many whitelists already created.

Arguments

hWlist
byRef hWlist AS INTEGER.
If an empty whitelist is successfully created then this will be updated with a valid handle. If not
then this will contain -1 (0xFFFFFFFF)

nMaxAddrs
byVal nMaxAddrs AS INTEGER.
Maximum addresses that will be stored in this whitelist

nMaxIrks
byVal nMaxIrks AS INTEGER.
Maximum Identity Resolving Keys (IRKs) that will be stored in this whitelist

nPktFilterMask

byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply to, as follows:-

Bit 0 : Set to 1 for Scan Request packets

Bit 1 : Set to 1 for Connection Request packets

Bit 2 : Set to 1 for Advert Report Packets

Bits 3 to 31 : reserved for future use

Note: If all bits are 0, then a default mask of 3 is used for the BL600

Interactive
Command

No

//Example :: BleWhitelist.sb

DIM rc,conHndl,hWlist, val

DIM addr$: addr$=""

//==

//==

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

203

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

sub AssertRC(byval tag as integer)

 if rc!=0 then

 print "\nFailed with ";integer.h' rc;" at tag ";tag

 endif

endsub

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

ENDFUNC 1

//==

// This handler is called when there is an advert report waiting to be read

//==

function HandlerAdvRpt() as integer

 dim ad$,dta$,ndisc,rsi

 rc = BleScanGetAdvReport(ad$,dta$,ndisc,rsi)

 while rc==0

 print "\nADV:";strhexize$(ad$);" ";strhexize$(dta$);" ";ndisc;" ";rsi

 rc = BleScanGetAdvReport(ad$,dta$,ndisc,rsi)

 endwhile

endfunc 1

//==

// This handler is called when there is an advert report waiting to be read

//==

sub WhiteListInit()

 //set invalid whitelist handle

 hWlist=-1

 //now check maximum whitelists that can be defined and for that valid handle

 //is not required

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

204

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc=BleWhiteListInfo(hWlist,0, val) //get max number of whitelists allowes

 AssertRC(100)

 print "\n Max allowed whitelists = "; val

 //create a whitelist

 rc=BleWhitelistCreate(hWlist,8,8,0)

 IF rc==0 THEN

 //Add address we want to specifically look for

 addr$="000016A40B1623"

 rc=BleWhitelistAddAddr(hWlist,addr$)

 AssertRC(110)

 //Made a mistake so clear it

 rc=BleWhitelistClear(hWlist)

 AssertRC(120)

 //now add the correct address

 addr$="000016A40B1642"

 rc=BleWhitelistAddAddr(hWlist,addr$)

 AssertRC(130)

 //now add first one in the trusted database

 rc=BleWhitelistAddIndex(hWlist,0)

 AssertRC(140)

 //Change the filter property from default used in the create function

 //so that connection requests are disallowed

 rc=BleWhitelistSetFilter(hWlist,1)

 AssertRC(150)

 //now check the whitelist by interogating the whitelist handle

 rc=BleWhiteListInfo(hWlist,101, val) //get current number of mac addresses

 AssertRC(160)

 print "\n Current number of addresses = "; val

 ENDIF

endsub

//==

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVBLE_ADV_REPORT CALL HandlerAdvRpt

//Initiliase a whitelist

WhiteListInit()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

205

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//start adverts with whitelisting

addr$=""

rc=BleAdvertStart(0,addr$,50,0,hWlist)

AssertRC(910)

//Wait for events

WAITEVENT

//destroy the whitelist

BleWhitelistDestroy(hWlist)

BLEWHITELISTCREATE is an extension function.

BleWhitelistDestroy

FUNCTION

This function is used to clear an existing whitelist identified by a valid handle previously returned from
BleWhitelistCreate() so that new addresses and Identity Resolving Keys (IRKs) can be added.

BLEWHITELISTDESTROY (hWlist)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist

byRef hWlist AS INTEGER.
This is the handle of the whitelist and is passed as a reference so that on exit it will have
an invalid handle value so cannot be used inadvertently. The handle will have been
returned by BleWhitelistCreate()

Interactive
Command

No

For example, see description of BleWhitelistCreate() above.

BLEWHITELISTDESTROY is an extension function.

BleWhitelistClear

FUNCTION

This function is used to clear an existing whitelist identified by a valid handle previously returned from
BleWhitelistCreate() so that new addresses and Identity Resolving Keys (IRKs) can be added.

BLEWHITELISTCLEAR (hWlist)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
https://onelaird.sharepoint.com/sites/cp/Shared%20Documents/CP%20Documentation/Bluetooth%20Product%20Documents/BL600/Guides/CONN-GUIDE-smartBASIC-BL600-Extension-Functionality.docx#_BleWhitelistCreate

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

206

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

hWlist
byVal hWlist AS INTEGER.
This is the handle of the whitelist to clear and will have been returned by
BleWhitelistCreate()

Interactive
Command

No

For example, see description of BleWhitelistCreate() above.

BLEWHITELISTCLEAR is an extension function.

BleWhitelistSetFilter

FUNCTION

This function is used to change the filter policy mask associated with the whitelist object identified by the
handle.

BLEWHITELISTSETFILTER (hWlist, nPktFilterMask)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist
byRef hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()

nPktFilterMask

byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply to, as
follows:-

Bit 0 : Set to 1 for Scan Request packets

Bit 1 : Set to 1 for Connection Request packets

Bit 2 : Set to 1 for Advert Report Packets

Bits 3 to 31 : reserved for future use

Interactive
Command

No

For example, see description of BleWhitelistCreate() above.

BLEWHITELISTSETFILTER is an extension function.

BleWhitelistAddAddr

FUNCTION

This function is used to add a 7 byte mac address to the whitelist identified by the handle supplied. The function
will automatically check if the mac address is trusted by interrogating the trusted device database and if it is,
then the address stored there along with the IRK is added instead of the address supplied.

BLEWHITELISTADDADDR (hWlist, addr$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
https://onelaird.sharepoint.com/sites/cp/Shared%20Documents/CP%20Documentation/Bluetooth%20Product%20Documents/BL600/Guides/CONN-GUIDE-smartBASIC-BL600-Extension-Functionality.docx#_BleWhitelistCreate
https://onelaird.sharepoint.com/sites/cp/Shared%20Documents/CP%20Documentation/Bluetooth%20Product%20Documents/BL600/Guides/CONN-GUIDE-smartBASIC-BL600-Extension-Functionality.docx#_BleWhitelistCreate

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

207

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

hWlist
byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()

addr$

byRef addr$ AS STRING.

This is the address that is to be added to the whitelist. It will be checked for presence

in trusted device database and if trusted, the IRK will also be added automatically to
the whitelist

Interactive
Command

No

For example, see description of BleWhitelistCreate() above.

BLEWHITELISTADDADDR is an extension function.

BleWhitelistAddIndex

FUNCTION

This function is used to add the Nth indexed device in the trusted device database to the whitelist identified by
the handle supplied. If that Nth record exists in the database then the Identity Resolving Key will also be added
automatically.

BLEWHITELISTADDINDEX (hWlist, nIndex)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist
byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()

nIndex

byVal nIndex AS INTEGER.

This is the Nth index (zero based) of the record in the trusted device database to add to
the whitelist. The IRK will also be added automatically to the whitelist.
The index is the same entity per the function BleBondMngrGetInfo()

Interactive
Command

No

For example, see description of BleWhitelistCreate() above.

BLEWHITELISTADDINDEX is an extension function.

BleWhitelistInfo

FUNCTION

This function is used to return information about the whitelist provided, which can be invalid for certain nInfoID
values as that is information about the whitelist manager in general.

BLEWHITELISTINFO (hWlist, nInfoID, nValue)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

hWlist
byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
https://onelaird.sharepoint.com/sites/cp/Shared%20Documents/CP%20Documentation/Bluetooth%20Product%20Documents/BL600/Guides/CONN-GUIDE-smartBASIC-BL600-Extension-Functionality.docx#_BleWhitelistCreate
https://onelaird.sharepoint.com/sites/cp/Shared%20Documents/CP%20Documentation/Bluetooth%20Product%20Documents/BL600/Guides/CONN-GUIDE-smartBASIC-BL600-Extension-Functionality.docx#_BleBondMngrGetInfo
https://onelaird.sharepoint.com/sites/cp/Shared%20Documents/CP%20Documentation/Bluetooth%20Product%20Documents/BL600/Guides/CONN-GUIDE-smartBASIC-BL600-Extension-Functionality.docx#_BleWhitelistCreate

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

208

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nInfoID

byVal nInfoID AS INTEGER.

This is ID of the information to be returned as follow:-

0 : maximum number of whitelists (hWlist is itnored)

1 : maximum number of mac addresses (hWlist is itnored)

2 : maximum number of IRKs (hWlist is itnored)

101 : current number of addresses added

102 : current number of IRKs added

Note: For 101 and 102, the values are cleared to 0 if BleWhitelistClear() is called.

nValue
byRef nValue AS INTEGER.

The information value is returned in this variable

Interactive
Command

No

For example, see description of BleWhitelistCreate() above.

BLEWHITELISTINFO is an extension function.

GATT Server Functions
This section describes all functions related to creating and managing services that collectively define a GATT
table from a GATT server role perspective. These functions allow the developer to create any service that has is
described and adopted by the Bluetooth SIG or any custom service that implements some custom unique
functionality, within resource constraints such as the limited RAM and FLASH memory that is exist in the
module.

A GATT table is a collection of adopted or custom services which, in turn, are a collection of adopted or custom
characteristics. By definition, an adopted service cannot contain custom characteristics but the reverse is
possible where a custom service can include both adopted and custom characteristics.

Descriptions of services and characteristics are available in the Bluetooth Specification v4.0 or newer. Because
these descriptions are concise and difficult to understand, the following section attempts to familiarise you with
these concepts using the smartBASIC programming environment perspective.

To help understand service and characteristic better, think of a characteristic as a container (or a pot) of data
where the pot comes with space to store the data and a set of properties that are officially called Descriptors in
the BT spec. In the pot analogy, think of a descriptor as the color of the pot, whether it has a lid, whether the lid
has a lock, whether it has a handle or a spout, etc. For a full list of these descriptors online, see
http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are
assigned 16-bit UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you decide
to add those to your characteristic definition.

You can consider a service as a carrier bag to hold a group of related characterisics together where the printing
on the carrier bag is a UUID. From a smartBASIC developer’s perspective, a set of characteristics is what you
need to manage and the concept of service is only required at GATT table creation time.

A GATT table can have many services, each containing one or more characteristics. The difference between
services and characteristics is expedited using an identification number called a UUID (Universally Unique
Identifier) which is a 128-bit (16-byte) number. Adopted services or characteristics have a 16-bit (2-byte)
shorthand identifier (which is an offset plus a base 128-bit UUID defined and reserved by the Bluetooth SIG);
custom service or characteristics have the full 128-bit UUID. The logic behind this is that a 16-bit UUID implies

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
https://onelaird.sharepoint.com/sites/cp/Shared%20Documents/CP%20Documentation/Bluetooth%20Product%20Documents/BL600/Guides/CONN-GUIDE-smartBASIC-BL600-Extension-Functionality.docx#_BleWhitelistCreate
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

209

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

that a specification has been published by the Bluetooth SIG whereas using a 128-bit UUID does NOT require any
central authority to maintain a register of those UUIDs or specifications describing them.

The lack of the requirement for a central register is important to understand in the sense that, if a custom
service or characteristic must be created, the developer can use any publicly available UUID (sometimes also
known as GUID) generation utility.

These utilities use entropy from the real world to generate a 128-bit random number that has an extremely low
probability to be the same as that generated by someone else at the same time or in the past or future.

As an example, at the time of writing this document, the following website
http://www.guidgenerator.com/online-guid-generator.aspx offers an immediate UUID generation service,
although it uses the term GUID. From the GUID Generator website:

How unique is a GUID?

128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000 GUIDs
per second were generated for 1 year the probability of a duplicate would be only 50%. Or if every
human on Earth generated 600,000,000 GUIDs there would only be a 50% probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central register
maintained by the Bluetooth SIG for custom UUIDs.

Please note that Laird does not guarantee that the UUID generated by this website or any other utility is unique.
It is left to the judgement of the developer whether to use it or not.

Note: If the developer intends to create custom services and/or characteristics then it is recommended that
a single UUID is generated and used from then on as a 128-bit (16 byte) company/developer unique
base along with a 16-bit (2-byte) offset, in the same manner as the Bluetooth SIG.

 This allows up to 65536 custom services and characteristics to be created, with the added advantage
that it is easier to maintain a list of 16-bit integers.

 The main reason for avoiding more than one long UUID is to keep RAM usage down given that 16
bytes of RAM is used to store a long UUID. smartBASIC functions have been provided to manage
these custom 2-byte UUIDs along with their 16-byte base UUIDs.

In this document, when a service or characteristic is described as adopted, it implies that the Bluetooth SIG
published a specification which defines that service or characteristic and there is a requirement that any device
claiming to support them has proof that the functionality has been tested and verified to behave as per that
specification.

Currently there is no requirement for custom service and/or characteristics to have any approval. By definition,
interoperability is restricted to the provider and implementer.

A service is an abstraction of some collectivised functionality which, if broken down further, would cease to
provide the intended behaviour. Two examples in the BLE domain that have been adopted by the Bluetooth SIG
are Blood Pressure Service and Heart Rate Service. Each have sub-components that map to characteristics.

Blood pressure is defined by a collection of data entities such as Systolic Pressure, Diastolic Pressure, and Pulse
Rate. Likewise, a Heart Rate service has a collection which includes entities such as the Pulse Rate and Body
Sensor Location.

A list of all the adopted services is at: http://developer.Bluetooth.org/GATT/services/Pages/ServicesHome.aspx.
Laird recommends that, if you decide to create a custom service, it should be defined and described in a similar

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://www.guidgenerator.com/online-guid-generator.aspx
http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

210

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

fashion; your goal should be to get the Bluetooth SIG to adopt it for everyone to use in an interoperable
manner.

These services are also assigned 16-bit UUIDs (value 0x18xx) and are referenced in some of the smartBASIC API
functions described in this section.

Services, as described above, are a collection of one or more characteristics. A list of all adopted characteristics
is found at: http://developer.Bluetooth.org/GATT/characteristics/Pages/CharacteristicsHome.aspx. You should
note that these descriptors are also assigned 16-bit UUIDs (value 0x2Axx) and are referenced in some of the API
functions described in this section. Custom characteristics have 128-bit (16-byte) UUIDs and API functions are
provided to handle those.

Note: If you intend to create a custom service or characteristic and adopt the recommendation of a single
16-byte base UUID so that the service can be identified using a 2-byte UUID, then allocate a 16-bit
value which is not going to coincide with any adopted values to minimise confusion. Selecting a similar
value is possible and legal given that the base UUID is different.

The remainder of this introduction focuses on the specifics of how to create and manage a GATT table from a
perspective of the smartBASIC API functions in the module.

Recall that a service was described as a carrier bag that groups related characteristics together and a
characteristic is a data container (pot). Therefore, a remote GATT client looking at the server which is presented
in your GATT table, sees multiple carrier bags each containing one or more pots of data.

The GATT client (remote end of the wireless connection) msut see those carrier bags to determine the groupings
and, once it has identified the pots, it only needs to keep a list of references to the pots it is interested in. Once
that list is made at the client end, it can ‘throw away the carrier bag’.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

211

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Similarly in the module, once the GATT table
is created and after each service is fully
populated with one or more characteristics,
there is no need to keep that ‘carrier bag’.
However, as each characterstic is ‘placed in
the carrier bag’ using the appropriate
smartBASIC API function, a receipt is returned
and is referred to as a char_handle. The
developer must then keep those handles to
be able to interact with that characteristic.
The handle does not care whether the
characteristic is adopted or custom because,
from then on the firmware managing it
behind the scenes in smartBASIC does not
care.

From the smartBASIC application developer’s
logical perspective, a GATT table looks
nothing like the table that is presented in
most BLE literature. Instead, the GATT table is
simply a collection of char_handles that
reference the characteristics (data
containers) which have been registered with
the underlying GATT table in the BLE stack.

A particular char_handle is used to make
something happen to the referenced
characteristic (data container) using a

smartBASIC function and conversely, if data
is written into that characteristic (data
container) by a remote GATT client, then an
event is thrown in the form of a message,

into the smartBASIC runtime engine which is
processed if and only if a handler function
has been registered by the apps developer
using the ONEVENT statement.

With this simple model in mind, an overview

of how the smartBASIC functions are used to
register services and characteristics is
illustrated in the flowchart on the right and
sample code follows on the next page.

 Yes

 Yes
Broadcastable

Create a metadata object which
defines the permissions for the

characteristic value attribute

Notifiable OR
Indicatable

BleHandleUuid()

BleSvcCommit()

BleAttrMetadata()

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

Start the definition of a new characteristic
which will be later commited to the GATT

table in a single transaction
BleCharNew()

 Yes User Desc
Descriptor?

BleAttrMetadata()

Create a metadata object which
defines the permissions for the

User Desc Descriptor

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc()

BleHandleUuid()

Create a UUID Handle for Service (16/128)

Create a UUID Handle for Characterisitic (16/128)

 Yes

BleAttrMetadata()

Add other
Descriptor?

Add parameters for creation of
other Descriptor

Create a metadata object which
defines the permissions for the

other Descriptor

BleCharDescAdd()

Commit the Characteristic to the
Gatt ServerTable in single transaction

BleCharCommit()

Commit a PRIMARY or SECONDARY
service which returns a service handle

 Yes

More
Services?

 Yes

More
Characteristics?

Save the handle

that is returned

as it is used to

interact with the

characteristic

 Yes Pres'tion Format
Descriptor?

Add parameters for creation of
Presentation Format Descriptor
BleCharDescPrstnFrmt()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

212

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

 //Example :: ServicesAndCharacteristics.sb (See in BT900CodeSnippets.zip)

 //==

 //Register two Services in the GATT Table. Service 1 with 2 Characteristics and

 //Service 2 with 1 characteristic. This implies a total of 3 characteristics to

 //manage.

 //The characteristic 2 in Service 1 will not be readable or writable but only

 //indicatable

 //The characteristic 1 in Service 2 will not be readable or writable but only

 //notifyable

 //==

 DIM rc //result code

 DIM hSvc //service handle

 DIM mdAttr

 DIM mdCccd

 DIM mdSccd

 DIM chProp

 DIM attr$

 DIM hChar11 // handles for characteristic 1 of Service 1

 DIM hChar21 // handles for characteristic 2 of Service 1

 DIM hChar12 // handles for characteristic 1 of Service 2

 DIM hUuidS1 // handles for uuid of Service 1

 DIM hUuidS2 // handles for uuid of Service 2

 DIM hUuidC11 // handles for uuid of characteristic 1 in Service 1

 DIM hUuidC12 // handles for uuid of characteristic 2 in Service 1

 DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

 //---Register Service 1

 hUuidS1 = BleHandleUuid16(0x180D)

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, hUuidS1, hSvc)

 //---Register Characteristic 1 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

213

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 chProp = BLE_CHAR_PROPERTIES_READ + BLE_CHAR_PROPERTIES_WRITE

 hUuidC11 = BleHandleUuid16(0x2A37)

 rc = BleCharNew(chProp, hUuidC11,mdAttr,mdCccd,mdSccd)

 rc = BleCharCommit(shHrs,hrs$,hChar11)

 //---Register Characteristic 2 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_INDICATE

 hUuidC12 = BleHandleUuid16(0x2A39)

 rc = BleCharNew(chProp, hUuidC12,mdAttr,mdCccd,mdSccd)

 attr$="\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar21)

 rc = BleServiceCommit(hSvc)

 //---Register Service 2 (can now reuse the service handle)

 hUuidS2 = BleHandleUuid16(0x1856)

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, hUuidS2, hSvc)

 //---Register Characteristic 1 in Service 2

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_NONE,BLE_ATTR_ACCESS_NONE,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_NOTIFY

 hUuidC21 = BleHandleUuid16(0x2A54)

 rc = BleCharNew(chProp, hUuidC21,mdAttr,mdCccd,mdSccd)

 attr$="\00\00\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar12)

 rc = BleServiceCommit(hSvc)

 //===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client are detected and processed as follows:

 //--

 // To deal with writes from a GATT client into characteristic 1 of Service 1

 // which has the handle hChar11

 //--

 // This handler is called when there is a EVCHARVAL message

 FUNCTION HandlerCharVal(BYVAL hChar AS INTEGER) AS INTEGER

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

214

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 DIM attr$

 IF hChar == hChar11 THEN

 rc = BleCharValueRead(hChar11,attr$)

 print "Svc1/Char1 has been writen with = ";attr$

 ENDIF

 ENDFUNC 1

 //enable characteristic value write handler

 OnEvent EVCHARVAL call HandlerCharVal

 WAITEVENT

Assuming there is a connection and notify has been enabled, a value notification is expedited as follows:

 //--

 // Notify a value for characteristic 1 in service 2

 //--

 attr$="somevalue"

 rc = BleCharValueNotify(hChar12,attr$)

Assuming there is a connection and indicate has been enabled, a value indication is expedited as follows:

 //--

 // indicate a value for characteristic 2 in service 1

 //--

 // This handler is called when there is a EVCHARHVC message

 FUNCTION HandlerCharHvc(BYVAL hChar AS INTEGER) AS INTEGER

 IF hChar == hChar12 THEN

 PRINT "Svc1/Char2 indicate has been confirmed"

 ENDIF

 ENDFUNC 1

 //enable characteristic value indication confirm handler

 OnEvent EVCHARHVC CALL HandlerCharHvc

 attr$="somevalue"

 rc = BleCharValueIndicate(hChar12,attr$)

The rest of this section details all the smartBASIC functions that help create that framework.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

215

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Events and Messages

See also Events and Messages for the messages that are thrown to the application which are related to the
generic characteristics API. The relevant messages are those that start with EVCHARxxx.

BleGapSvcInit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose, with the
information provided. If it is not called before adverts are started, default values are exposed. Given this is a
mandatory service, unlike other services which must be registered, this one must only be initialised as the
underlying BLE stack unconditionally registers it when starting up.

The GAP service contains five characteristics as listed at the following site:
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.generic_acce
ss.xml

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConnInterval, nMaxConnInterval,
nSupervisionTout, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

deviceName

byRef deviceName AS STRING
The name of the device (such as Laird_Thermometer) to store in the Device Name
characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT(), this field is read from
the service and an attempt is made to append it in the Device Name AD. If the
name is too long, that function fails to initialise the advert report and a default
name is transmitted. We recommend that the device name submitted in this call
be as short as possible.

nameWritable

byVal nameWritable AS INTEGER

If non-zero, the peer device is allowed to write the device name. Some profiles allow this
to be made optional.

nAppearance

byVal nAppearance AS INTEGER

Field lists the external appearance of the device and updates the Appearance
characteristic of the GAP service. Possible values:
org.Bluetooth.characteristic.gap.appearance

nMinConnInterval

byVal nMinConnInterval AS INTEGER

The preferred minimum connection interval, updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be smaller than nMaxConnInterval.

nMaxConnInterval

byVal nMaxConnInterval AS INTEGER

The preferred maximum connection interval, updates the ‘Peripheral Preferred
Connection Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be larger than nMinConnInterval.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

216

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nSupervisionTimeout

byVal nSupervisionTimeout AS INTEGER

The preferred link supervision timeout and updates the ‘Peripheral Preferred Connection
Parameters’ characteristic of the GAP service.

Range is between 100000 to 32000000 microseconds (rounded to the nearest 10000
microseconds).

nSlaveLatency

byVal nSlaveLatency AS INTEGER

The preferred slave latency is the number of communication intervals that a slave may
ignore without losing the connection and updates the ‘Peripheral Preferred Connection
Parameters’ characteristic of the GAP service.

This value must be smaller than (nSupervisionTimeout/ nMaxConnInterval) -1. i.e.
nSlaveLatency < (nSupervisionTimeout / nMaxConnInterval) -1

Example:

 //Example :: BleGapSvcInit.sb (See in BT900CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL,s$

 dvcNme$= "Laird_TS"

 nmeWrtble = 0 //Device name will not be writable by peer

 apprnce = 768 //The device will appear as a Generic Thermometer

 MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds

 MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second

 ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

 sL = 0 //Slave latency--number of conn events that can be missed

 rc=BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc //Print result code as 4 hex digits

 ENDIF

Expected Output:

Success

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

217

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleGetDeviceName$

FUNCTION

This function reads the device name characteristic value from the local GATT table. This value is the same as that
supplied in BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it may be different.

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the best time to
call this function.

BLEGETDEVICENAME$ ()

Returns STRING, the current device name in the local GATT table. It is the same as that supplied in
BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it can be different.
EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value.

Arguments None

Example:

 //Example :: BleGetDeviceName$.sb (See in BT900CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL

 PRINT "\n --- DevName : "; BleGetDeviceName$()

 // Changing device name manually

 dvcNme$= "My BT900"

 nmeWrtble = 0

 apprnce = 768

 MinConnInt = 500000

 MaxConnInt = 1000000

 ConnSupTO = 4000000

 sL = 0

 rc = BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 PRINT "\n --- New DevName : "; BleGetDeviceName$()

Expected Output:

--- DevName : LAIRD BT900

--- New DevName : My BT900

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

218

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleSvcRegDevInfo

FUNCTION

This function is used to register the Device Information service with the GATT server. The Device Information
service contains nine characteristics as listed at the following website:
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.device_infor
mation.xml

The firmware revision string is always set to BT900:vW.X.Y.Z where W,X,Y,Z are as per the revision information
which is returned to the command AT I 4.

BLESVCREGDEVINFO (manfName$, modelNum$, serialNum$, hwRev$, swRev$, sysId$, regDataList$, pnpId$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

manfName$
byVal manfName$ AS STRING
The device manufacturer. Can be set empty to omit submission.

modelNum$
byVal modelNum$ AS STRING

The device model number. Can be set empty to omit submission.

serialNum$
byVal serialNum$ AS STRING

The device serial number. Can be set empty to omit submission.

hwRev$
byVal hwRev$ AS STRING

The device hardware revision string. Can be set empty to omit submission.

swRev$
byVal swRev$ AS STRING

The device software revision string. Can be set empty to omit submission.

sysId$

byVal sysId$ AS STRING

The device system ID as defined in the specifications. Can be set empty to omit submission.

Otherwise it shall be a string exactly eight octets long, where:

 Byte 0..4 := Manufacturer Identifier

 Byte 5..7 := Organisationally Unique Identifier

If the string is one character long and contains @, the system ID is created from the Bluetooth address
if (and only if) an IEEE public address is set. If the address is the random static variety, this
characteristic is omitted.

regDataList$

byVal regDataList$ AS STRING

The device’s regulatory certification data list as defined in the specification. It can be set as an empty
string to omit submission.

pnpId$

byVal pnpId$ AS STRING

The device’s plug and play ID as defined in the specification. Can be set empty to omit submission.
Otherwise, it shall be exactly 7 octets long, where:

 Byte 0 := Vendor Id Source

 Byte 1,2 := Vendor Id (Byte 1 is LSB)

 Byte 3,4 := Product Id (Byte 3 is LSB)

 Byte 5,6 := Product Version (Byte 5 is LSB)

Example:

 //Example :: BleSvcRegDevInfo.sb (See in BT900CodeSnippets.zip)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

219

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 DIM rc,manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$

 manfNme$ = "Laird Technologies"

 mdlNum$ = "BT900"

 srlNum$ = "" //empty to omit submission

 hwRev$ = "1.0"

 swRev$ = "1.0"

 sysId$ = "" //empty to omit submission

 regDtaLst$ = "" //empty to omit submission

 pnpId$ = "" //empty to omit submission

 rc=BleSvcRegDevInfo(manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc

 ENDIF

Expected Output:

BleHandleUuid16

FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32-bit integer handle that associates
the integer as an offset into the Bluetooth SIG 128-bit (16-byte) base UUID which is used for all adopted
services, characteristics, and descriptors.

If the input value is not in the valid range, then an invalid handle (0) is returned.

The returned handle is treated by the developer as an opaque entity and no further logic is based on the bit
content, apart from all zeros which represent an invalid UUID handle.

BLEHANDLEUUID16 (nUuid16)
Returns INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle

Arguments:

nUuid16
byVal nUuid16 AS INTEGER
nUuid16 is first bitwise ANDed with 0xFFFF and the result is treated as an offset into the Bluetooth SIG
128 bit base UUID

Example:

 //Example :: BleHandleUuid16.sb (See in BT900CodeSnippets.zip)

 DIM uuid

Success

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

220

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 DIM hUuidHRS

 uuid = 0x180D //this is UUID for Heart Rate Service

 hUuidHRS = BleHandleUuid16(uuid)

 IF hUuidHRS == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;"(";hUuidHRS;")"

 ENDIF

Expected Output:

BleHandleUuid128

FUNCTION

This function takes a 16-byte string and converts it into a 32-bit integer handle. The handle consists of a 16-bit
(2-byte) offset into a new 128-bit base UUID.

The base UUID is created by taking the 16-byte input string and setting bytes 12 and 13 to zero after extracting
those bytes and storing them in the handle object. The handle also contains an index into an array of these 16-
byte base UUIDs which are managed opaquely in the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on
the bit content. However, note that a string of zeroes represents an invalid UUID handle.

Note: Ensure that you use a 16-byte UUID that has been generated using a random number generator with
sufficient entropy to minimise duplication andthat the first byte of the array is the most significant
byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns INTEGER, A handle representing the shorthand UUID.
If zero, which is an invalid UUID handle, there is either no spare RAM memory to save the 16-byte base
or more than 253 custom base UUIDs have been registered.

Arguments:

stUuid$
byRef stUuid$ AS STRING
Any 16-byte string that was generated using a UUID generation utility that has enough entropy to ensure
that it is random. The first byte of the string is the MSB of the UUID (big endian format).

Example:

 //Example :: BleHandleUuid128.sb (See in BT900CodeSnippets.zip)

 DIM uuid$, hUuidCustom

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

Handle for HRS Uuid is FE01180D (-33482739)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

221

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 uuid$ = StrDehexize$(uuid$)

 hUuidCustom = BleHandleUuid128(uuid$)

 IF hUuidCustom == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; "(";hUuidCustom;")"

 ENDIF

 // hUuidCustom now references an object which points to

 // a base uuid = ced9d91366924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

Expected Output:

BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously
created using BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references
the same 128 base UUID as the one referenced by the UUID handle supplied as the input parameter.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on
the bit content, apart from all zeroes (which represents an invalid UUID handle).

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid UUID handle,
if nUuidHandle is an invalid handle in the first place.

Arguments:

nUuidHandle
byVal nUuidHandle AS INTEGER
A handle that was previously created using either BleHandleUui16() or BleHandleUuid128().

nUuid16

byVal nUuid16 AS INTEGER

A UUID value in the range 0 t0 65535 which is treated as an offset into the 128-bit base UUID
referenced by nUuidHandle.

Example:

 //Example :: BleHandleUuidSibling.sb (See in BT900CodeSnippets.zip)

 DIM uuid$,hUuid1, hUuid2 //hUuid2 will have the same base uuid as hUuid1

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuid1 = BleHandleUuid128(uuid$)

 IF hUuid1 == 0 THEN

Handle for custom Uuid is FC03D913 (-66856685)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

222

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h' hUuid1;"(";hUuid1;")"

 ENDIF

 // hUuid1 now references an object which points to

 // a base uuid = ced9000066924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

 hUuid2 = BleHandleUuidSibling(hUuid1,0x1234)

 IF hUuid2 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "\nHandle for custom sibling Uuid is ";integer.h'hUuid2;"(";hUuid2;")"

 ENDIF

 // hUuid2 now references an object which also points to

 // the base uuid = ced9000066924a1287d56f2700004762 (note 0's in byte position 2/3)

 // and has the offset = 0x1234

Expected Output:

BleServiceNew

FUNCTION

As explained in an earlier section, a service in the context of a GATT table is a collection of related
characteristics. This function is used to inform the underlying GATT table manager that one or more related
characteristics are going to be created and installed in the GATT table and that, until the next call of this
function, they will be associated with the service handle that it provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a
PRIMARY or a SECONDARY service. The value for this attribute is the UUID that identifies this service and in turn
have been precreated using one of the functions: BleHandleUuid16(), BleHandleUuid128(), or
BleHandleUuidSibling().

Note: When a GATT client queries a GATT server for services over a BLE connection, it only receives a list of
PRIMARY services. SECONDARY services are a mechanism for multiple PRIMARY services to reference
single instances of shared characteristics that are collected in a SECONDARY service. This referencing is
expedited within the definition of a service using the concept of INCLUDED SERVICE which is an
attribute that is grouped with the PRIMARY service definition. An Included Service is expedited using
the function BleSvcAddIncludeSvc() which is described immediately after this function.

Handle for custom Uuid is FC03D913 (-66856685)

Handle for custom sibling Uuid is FC031234 (-66907596)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

223

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

This function now replaces BleSvcCommit() and marks the beginning of a service definition in the GATT server
table. When the last descriptor of the last characteristic has been registered the service definition should be
terminated by calling BleServiceCommit().

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSvcType
byVal nSvcType AS INTEGER
This is zero for a SECONDARY service and 1 for a PRIMARY service. All other values are reserved for
future use and result in this function failing with an appropriate result code.

nUuidHandle

byVal nUuidHandle AS INTEGER

This is a handle to a 16-bit or 128-bit UUID that identifies the type of service function provided by all
the characteristics collected under it. It has been pre-created using one of the three functions:
BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling().

hService

byRef hService AS INTEGER

If the service attribute is created in the GATT table, then this contains a composite handle which
references the actual attribute handle. This is then subsequently used when adding characteristics
to the GATT table. If the function fails to install the service attribute for any reason, this variable will
contain 0 and the returned result code will be non-zero.

Example:

 //Example :: BleServiceNew.sb (See in BT900CodeSnippets.zip)

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 DIM hUuidHT : hUuidHT = BleHandleUuid16(0x1809) //HT Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidHT,hHtsSvc)==0 THEN

 PRINT "\nHealth Thermometer Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidHT

 PRINT "\nService Attribute Handle value: ";hHtsSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

 //--

 //Create a Battery PRIMARY service attribute which has a uuid of 0x180F

 //--

 DIM hBatSvc //composite handle for battery primary service

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

224

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //or we could have reused nHtsSvc

 DIM hUuidBatt : hUuidBatt = BleHandleUuid16(0x180F) //Batt Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidBatt,hBatSvc)==0 THEN

 PRINT "\n\nBattery Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidBatt

 PRINT "\nService Attribute Handle value: ";hBatSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

Expected Output:

BleServiceCommit

This function in the BT900 is used to commit a defined service using BleServiceNew() to the GATT table and
should be called after the last characteristic/description has been created/commited for that service.

BLESERVICECOMMIT (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

hService
byVal hService AS INTEGER
This handle is returned from BleServiceNew().

See example for BleCharCommit().

BleSvcAddIncludeSvc

FUNCTION

Note: This function is currently not available for use on this module

This function is used to add a reference to a service within another service. This is usually, but not necessarily, a
SECONDARY service which is virtually identical to a PRIMARY service from the GATT server perspective. The only

Health Thermometer Service attribute written to GATT table

UUID Handle value: -33482743

Service Attribute Handle value: 16

Battery Service attribute written to GATT table

UUID Handle value: -33482737

Service Attribute Handle value: 17

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

225

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

difference is that, when a GATT client queries a device for all services, it does not receive mention of
SECONDARY services.

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service it performs a
sub-procedure to get handles to all the characteristics that are part of that INCLUDED service.

This mechanism is provided to allow for a single set of characteristics to be shared by multiple primary services.
This is most relevant if a characteristic is defined so that it can have only one instance in a GATT table but needs
to be offered in multiple PRIMARY services. A typical implementation, where a characteristic is part of many
PRIMARY services, installs that characteristic in a SECONDARY service (see BleSvcCommit()) and then uses the
function defined in this section to add it to all the PRIMARY services that want to have that characteristic as part
of their group.

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn can include
further PRIMARY or SECONDARY services. The only restriction to nested includes is that there cannot be
recursion.

Note: If a service has INCLUDED services, then they is installed in the GATT table immediately after a service
is created using BleSvcCommit() and before BleCharCommit(). The BT 4.0 specification mandates that
any ‘included service’ attribute be present before any characteristic attributes within a particular
service group declaration.

BleSvcAddIncludeSvc (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

hService
byVal hService AS INTEGER
This argument contains a handle that was previously created using the function BleSvcCommit().

Example:

 //Example :: BleSvcAddIncludeSvc.sb (See in BT900CodeSnippets.zip)

 #define BLE_SERVICE_SECONDARY 0

 #define BLE_SERVICE_PRIMARY 1

 //--

 //Create a Battery SECONDARY service attribure which has a uuid of 0x180F

 //--

 dim hBatSvc //composite handle for batteru primary service

 dim rc //or we could have reused nHtsSvc

 dim metaSuccess

 DIM charMet : charMet = BleAttrMetaData(1,1,10,1,metaSuccess)

 DIM s$: s$ = "Hello" //initial value of char in Battery Service

 DIM hBatChar

 rc = BleServiceNew(BLE_SERVICE_SECONDARY, BleHandleUuid16(0x180F), hBatSvc)

 rc = BleCharNew(3,BleHandleUuid16(0x2A1C),charMet,0,0)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

226

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc = BleCharCommit(hBatSvc, s$,hBatChar)

 rc = BleServiceCommit(hBatSvc)

 //--

 //Create a Health Thermometer PRIMARY service attribure which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, BleHandleUuid16(0x1809), hHtsSvc)

 rc = BleServiceCommit(hHtsSvc)

 //Have to add includes before any characteristics are committed

 PRINT INTEGER.h'BleSvcAddIncludeSvc(hBatSvc)

BleAttrMetadata

FUNCTION

A GATT table is an array of attributes which are grouped into characteristics which are further grouped into
services. Each attribute consists of a data value which can be anything from 1 to 512 bytes long according to the
specification and properties such as read and write permissions, authentication and security properties. When
services and characteristics are added to a GATT server table, multiple attributes with appropriate data and
properties are added.

This function allows the creation of a 32-bit integer (an opaque object) which defines those properties and is
then submitted along with other information to add the attribute to the GATT table.

When adding a service attribute (not the whole service, in this present context), the properties are defined in
the BT specification so that it is open for reads without any security requirements; it cannot be written and
always has the same data content structure. This implies that a metadata object does NOT need to be created.

However, when adding characteristics, which consists of a minimum of two attributes, one similar in function as
the aforementioned service attribute and the other the actual data container, then properties for the value
attribute must be specified. Here, properties refers to properties for the attribute, not properties for the
characteristic container as a whole.

For example, the value attribute must be specified for read/write permission and whether it needs security and
authentication to be accessed.

If the characteristic is capable of notification and indication, the client implicitly must be able to enable or
disable that. This is done through a Characteristic Descriptor - another attribute. The attribute also must have
metadata supplied when the characteristic is created and registered in the GATT table. This attribute, if it exists,
is called a Client Characteristic Configuration Descriptor (CCCD). A CCCD always has two bytes of data and
currently only two bits are used as on/off settings for notification and indication.

A characteristic can also optionally be capable of broadcasting its value data in advertisements. For the GATT
client to be able to control this, another type of Characteristic Descriptor requires a metadata object to be
supplied when the characteristic is created and registered in the GATT table. This attribute, if it exists, is called a

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

227

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Server Characteristic Configuration Descriptor (SCCD). A SCCD always has two bytes of data and currently only
one bit is used as on/off settings for broadcasts.

Finally if the characteristic has other descriptors to qualify its behaviour, a separate API function is supplied to
add that to the GATT table and when setting up, a metadata object also must be supplied.

Consider a metadata object as a note to define how an attribute behaves; the GATT table manager needs this
before it is added. Some attributes have those ‘notes’ specified by the BT specification; if this is the case, none
need to be provided to the GATT table manager.

This function helps write that metadata.

BLEATTRMETADATA (nReadRights, nWriteRights, nMaxDataLen, fIsVariableLen, resCode)

Returns INTEGER, a 32-bit opaque data object to be used in subsequent calls when adding
Characteristics to a GATT table.

Arguments:

nReadRights

byVal nReadRights AS INTEGER

This specifies the read rights and shall have one of the following values:

0 No access

1 Open

2 Encrypted with No Man-In-The-Middle (MITM) protection

3 Encrypted with Man-In-The-Middle (MITM) protection

4 Signed with No Man-In-The-Middle (MITM) protection (not available)

5 Signed with Man-In-The-Middle (MITM) protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nWriteRights

byVal nWriteRights AS INTEGER

This specifies the write rights and shall have one of the following values:

0 No access

1 Open

2 Encrypted with No Man-In-The-Middle (MITM) protection

3 Encrypted with Man-In-The-Middle (MITM) protection

4 Signed with No Man-In-The-Middle (MITM) protection (not available)

5 Signed with Man-In-The-Middle (MITM) protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nMaxDataLen

byVal nMaxDataLen AS INTEGER

This specifies the maximum data length of the VALUE attribute.

Range is from 1 to 512 bytes according to the BT specification; the stack implemented in the
module may limit it for early versions. At the time of writing the limit is 20 bytes.

fIsVariableLen

byVal fIsVariableLen AS INTEGER

Set this to non-zero only if you want the attribute to automatically shorten its length according
to the number of bytes written by the client.

For example, if the initial length is 2 and the client writes only 1 byte, then if this is 0, only the
first byte gets updated and the rest remain unchanged. If this parameter is set to 1, then when
a single byte is written the attribute shortens its length to accommodate. If the client tries to
write more bytes than the initial maximum length, then the client receives an error response

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

228

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

resCode

byRef resCode AS INTEGER

This variable is updated with a result code which is 0 if a metadata object was successfully
returned by this call. Any other value implies a metadata object did not get created.

Example:

 //Example :: BleAttrMetadata.sb (See in BT900CodeSnippets.zip)

 DIM mdVal //metadata for value attribute of Characteristic

 DIM mdCccd //metadata for CCCD attribute of Characteristic

 DIM mdSccd //metadata for SCCD attribute of Characteristic

 DIM rc

 //++++

 // Create the metadata for the value attribute in the characteristic

 // and Heart Rate attribute has variable length

 //++++

 //There is always a Value attribute in a characteristic

 mdVal=BleAttrMetadata(17,0,20,0,rc)

 //There is a CCCD and SCCD in this characteristic

 mdCccd=BleAttrMetadata(1,2,2,0,rc)

 mdSccd=BleAttrMetadata(0,0,2,0,rc)

 //Create the Characteristic object

 IF BleCharNew(3,BleHandleUuid16(0x2A1C),mdVal,mdCccd,mdSccd)==0 THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BleAttrMetadataEx

BLEATTRMETADATAEX (nReadRights, nWriteRights, nMaxDataLen, nFlags, resCode)

Returns INTEGER, a 32-bit opaque data object to be used in subsequent calls when adding
Characteristics to a GATT table.

Arguments:

Success

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

229

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nReadRights

byVal nReadRights AS INTEGER

This specifies the read rights and shall have one of the following values:

0 No access

1 Open

2 Encrypted with No Man-In-The-Middle (MITM) protection

3 Encrypted with Man-In-The-Middle (MITM) protection

4 Signed with No Man-In-The-Middle (MITM) protection (not available)

5 Signed with Man-In-The-Middle (MITM) protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nWriteRights

byVal nWriteRights AS INTEGER

This specifies the write rights and shall have one of the following values:

0 No access

1 Open

2 Encrypted with No Man-In-The-Middle (MITM) protection

3 Encrypted with Man-In-The-Middle (MITM) protection

4 Signed with No Man-In-The-Middle (MITM) protection (not available)

5 Signed with Man-In-The-Middle (MITM) protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nMaxDataLen

byVal nMaxDataLen AS INTEGER

This specifies the maximum data length of the VALUE attribute.

Range is from 1 to 512 bytes according to the BT specification; the stack implemented in the
module may limit it for early versions. At the time of writing the limit is 20 bytes.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

230

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nFlags

byVal nFlags AS INTEGER

(Note The deprecated function BleAttrMetaData effectively behaves as if this

parameter was either 0 or 1 and as if all others bits are 0)

This is a bit mask where the bits are defined as follows:-

Bit 0 :

Set this to 1 only if you want the attribute to automatically shorten it’s length

according to the number of bytes written by the client. For example, if the initial

length is 2 and the client writes only 1 byte, then if this is 0, then only the first byte

gets updated and the rest remain unchanged. If this parameter is set to 1, then

when a single byte is written the attribute will shorten it’s length to accommodate. If

the client tries to write more bytes than the initial maximum length, then the client

will get an error response.

Bit 1:

Set this to 1 to ensure that the memory for the attribute is allocated from User space

(and hence less memory available for smartBASIC) so that a larger gatt table can be

created.

This bit is ignored for all attributes other than for characteristic value.

Bit 2:

Set this to 1 to require authorisation for reads. When an attempt to read is made

by the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD

or EVAUTHDESC is thrown to the app and in the handler for that event, either

BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to

grant or deny access.

Bit 3

Set this to 1 to require authorisation for writes. When an attempt to read is made by

the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or

EVAUTHDESC is thrown to the app and in the handler for that event, either

BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to

grant or deny access.

resCode

byRef resCode AS INTEGER

This variable is updated with a result code which is 0 if a metadata object was successfully
returned by this call. Any other value implies a metadata object did not get created.

BLEATTRMETADATAEX is an extension function.

BleCharNew

FUNCTION

When a characteristic is to be added to a GATT table, multiple attribute objects must be precreated. After they
are created successfully, they are committed to the GATT table in a single atomic transaction.

This function is the first function that is called to start the process of creating those multiple attribute objects. It
is used to select the characteristic properties (which are distinct and different from attribute properties), the
UUID to be allocated for it and then up to three metadata objects for the value attribute, and CCCD/SCCD
Descriptors respectively.

BLECHARNEW (nCharProps,nUuidHandle,mdVal,mdCccd,mdSccd)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

231

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nCharProps

byVal nCharProps AS INTEGER

This variable contains a bit mask to specify the following high level properties for the
characteristic that is added to the GATT table:

Bit Description

0 Broadcast capable (SCCD descriptor must be present)

1 Can be read by the client

2 Can be written by the client without a response

3 Can be written

4 Can be notifiable (CCCD descriptor must be present)

5 Can be indicatable (CCCD descriptor must be present)

6 Can accept signed writes

7 Reliable writes

nUuidHandle

byVal nUuidHandle AS INTEGER

This specifies the UUID that is allocated to the characteristic, either 16 or 128 bits. This
variable is a handle, pre-created using one of the following functions:
BleHandleUuid16(), BleHandleUuid128(), BleHandleUuidSibling().

mdVal

byVal mdVal AS INTEGER

This is the mandatory metadata used to define the properties of the Value attribute that is
created in the characteristic and is pre-created with help from function BleAttrMetadata().

mdCccd

byVal mdCccd AS INTEGER

This is an optional metadata that is used to define the properties of the CCCD descriptor
attribute that is created in the characteristic and is pre-created using the help of the function
BleAttrMetadata() or set to 0 if CCCD is not to be created.

If nCharProps specifies that the characteristic is notifiable or indicatable and this value
contains 0, this function aborts with an appropriate result code.

mdSccd

byVal mdSccd AS INTEGER

This is an optional metadata that is used to define the properties of the SCCD descriptor
attribute that is created in the characteristic and is pre-created using the help of the function
BleAttrMetadata() or set to 0 if SCCD is not to be created.

If nCharProps specifies that the characteristic is broadcastable and this value contains 0, this
function aborts with an appropriate resultcode.

Example:

 // Example :: BleCharNew.sb (See in BT900CodeSnippets.zip)

 DIM rc

 DIM charUuid : charUuid = BleHandleUuid16(2) //Characteristic's UUID

 DIM mdVal : mdVal = BleAttrMetadata(1,0,20,0,rc) //Metadata for value attribute

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //Metadata for CCCD attribute of Characteristic

 //==

 // Create a new char:

 // --- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

232

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 // --- Can be read, not written (shown in mdVal as well)

 //==

 IF BleCharNew(0x22,charUuid,mdVal,mdCccd,0)==0 THEN

 PRINT "\nNew Characteristic created"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BleCharDescUserDesc

FUNCTION

This function adds an optional User Description Descriptor to a Characteristic and can only be called after
BleCharNew() starts the process of describing a new characteristic.

The BT 4.0 specification describes the User Description Descriptor as “.. a UTF-8 string of variable size that is a
textual description of the characteristic value.” It further stipulates that this attribute is optionally writable and
so a metadata argument exists to configure it as such. The metadata automatically updates the Writable
Auxilliaries properties flag for the characteristic. This is why that flag bit is NOT specified for the nCharProps
argument to the BleCharNew() function.

BLECHARDESCUSERDESC(userDesc$, mdUser)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

userDesc$
byRef userDesc$ AS STRING
The user description string with which to initiliase the descriptor. If the length of the string exceeds the
maximum length of an attribute then this function aborts with an error result code.

mdUser

byVal mdUser AS INTEGER
This is a mandatory metadata that defines the properties of the User Description Descriptor attribute
created in the characteristic and pre-created using the help of BleAttrMetadata(). If the write rights are
set to 1 or greater, the attribute is marked as writable and the client is able to provide a user
description that overwrites the one provided in this call.

Example:

 //Example :: BleCharDescUserDesc.sb (See in BT900CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

New Characteristic created

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

233

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

Char created and User Description 'A description' added

BleCharDescPrstnFrmt

FUNCTION

This function adds an optional Presentation Format Descriptor to a characteristic and can only be called after
BleCharNew() has started the process of describing a new characteristic. It adds the descriptor to the GATT table
with open read permission and no write access, which means a metadata parameter is not required.

The BT 4.0 specification states that one or more presentation format descriptors can occur in a characteristic
and that if more than one, then an Aggregate Format description is also included.

The book Bluetooth Low Energy: The Developer's Handbook by Robin Heydon, says the following on the subject
of the Presentation Format Descriptor:

“One of the goals for the Generic Attribute Profile was to enable generic clients. A generic client is
defined as a device that can read the values of a characteristic and display them to the user without
understanding what they mean.
. . .
The most important aspect that denotes if a characteristic can be used by a generic client is the
Characteristic Presentation Format descriptor. If this exists, it’s possible for the generic client to display
its value, and it is safe to read this value.”

BLECHARDESCPRSTNFRMT (nFormat,nExponent,nUnit,nNameSpace,nNSdesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nFormat

byVal nFormat AS INTEGER
Valid range 0 to 255.
The format specifies how the data in the Value attribute is structured. A list of valid values for this
argument is found at http://developer.Bluetooth.org/GATT/Pages/FormatTypes.aspx and the
enumeration is described in the BT 4.0 spec, section 3.3.3.5.2.
The following is the enumeration list at the time of writing:

0x00 RFU 0x01 boolean

0x02 2bit 0x03 nibble

0x04 unit8 0x05 uint12

0x06 uint16 0x07 uint24

0x08 uint32 0x09 uint48

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

234

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

0x0A uint64 0x0B uint128

0x0C sint8 0x0D sint12

0x0E sint16 0x0F sint24

0x10 sint32 0x11 sint48

0x12 sint64 0x13 sint128

0x14 float32 0x15 float64

0x16 SFLOAT 0x17 FLOAT

0x18 duint16 0x19 utf8s

0x1A utf16s 0x1B struct

0x1C-0xFF RFU

nExponent

byVal nExponent AS INTEGER
This value is used with integer data types given by the enumeration in nFormat to further qualify the
value so that the actual value is:
actual value = Characteristic Value * 10 to the power of nExponent.
Valid range -128 to 127

nUnit

byVal nUnit AS INTEGER
This value is a 16-bit UUID used as an enumeration to specify the units which are listed in the
Assigned Numbers document published by the Bluetooth SIG, found at:
http://developer.Bluetooth.org/GATT/units/Pages/default.aspx
Valid range 0 to 65535.

nNameSpace

byVal nNameSpace AS INTEGER
The value identifies the organization, defined in the Assigned Numbers document published by the
Bluetooth SIG, found at:
https://developer.Bluetooth.org/GATT/Pages/GATTNamespaceDescriptors.aspx
Valid range 0 to 255.

nNSdesc
byVal nNSdesc AS INTEGER
This value is a description of the organisation specified by nNameSpace.
Valid range 0 to 65535.

Example:

 //Example :: BleCharDescPrstnFrmt.sb (See in BT900CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/units/Pages/default.aspx
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

235

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDIF

 // ~ ~ ~

 // other optional descriptors

 // ~ ~ ~

 // 16 bit signed integer = 0x0E

 // exponent = 2

 // unit = 0x271A (amount concentration (mole per cubic metre))

 // namespace = 0x01 == Bluetooth SIG

 // description = 0x0000 == unknown

 IF BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)==0 THEN

 PRINT "\nPresentation Format Descriptor added"

 ELSE

 PRINT "\nPresentation Format Descriptor not added"

 ENDIF

Expected Output:

BleCharDescAdd

FUNCTION

This function is used to add any Characteristic Descriptor as long as its UUID is not in the range 0x2900 to
0x2904 inclusive, as they are treated specially using dedicated API functions. For example, 0x2904 is the
Presentation Format Descriptor and it is catered for by the API function BleCharDescPrstnFrmt().

Since this function allows existing /future defined Descriptors to be added that may or may not have write
access or require security requirements, a metadata object must be supplied allowing that to be configured.

BLECHARDESCADD (nUuid16, attr$, mdDesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nUuid16

byVal nUuid16 AS INTEGER

This is a value in the range 0x2905 to 0x2999

Note: This is the actual UUID value, NOT the handle.

The highest value at the time of writing is 0x2908, defined for the Report Reference Descriptor.
See http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx for a list of
Descriptors defined and adopted by the Bluetooth SIG.

Char created and User Description 'A description' added

Presentation Format Descriptor added

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

236

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

attr$
byRef attr$ AS STRING
This is the data that is saved in the Descriptor’s attribute

mdDesc

byVal n AS INTEGER
This is mandatory metadata that is used to define the properties of the Descriptor attribute that is
created in the Characteristic and was pre-created using the help of the function BleAttrMetadata(). If
the write rights are set to 1 or greater, then the attribute is marked as writable and the client is able
to modify the attribute value.

Example:

 //Example :: BleCharDescAdd.sb (See in BT900CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = charMet

 DIM mdSccd : mdSccd = charMet

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 rc=BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)

 // ~ ~ ~

 // other descriptors

 // ~ ~ ~

 //++++

 //Add the other Descriptor 0x29XX -- first one

 //++++

 DIM mdChrDsc : mdChrDsc = BleAttrMetadata(1,0,20,0,metaSuccess)

 DIM attr$: attr$="some_value1"

 rc=BleCharDescAdd(0x2905,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- second one

 //++++

 attr$="some_value2"

 rc=rc+BleCharDescAdd(0x2906,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- last one

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

237

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //++++

 attr$="some_value3"

 rc=rc+BleCharDescAdd(0x2907,attr$,mdChrDsc)

 IF rc==0 THEN

 PRINT "\nOther descriptors added successfully"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BleCharCommit

FUNCTION

This function commits a characteristic which was prepared by calling BleCharNew() and optionally
BleCharDescUserDesc(),BleCharDescPrstnFrmt() or BleCharDescAdd().

It is an instruction to the GATT table manager that all relevant attributes that make up the characteristic should
appear in the GATT table in a single atomic transaction. If it successfully created, a single composite
characteristic handle is returned which should not be confused with GATT table attribute handles. If the
Characteristic was not accepted then this function returns a non-zero result code which conveys the reason and
the handle argument that is returned has a special invalid handle of 0.

The characteristic handle that is returned references an internal opaque object that is a linked list of all the
attribute handles in the characteristic which by definition implies that there is a minimum of 1 (for the
characteristic value attribute) and more as appropriate. For example, if the characteristic’s property specified is
notifiable then a single CCCD attribute also exists.

Note: In the GATT table, when a characteristic is registered, there are actually a minimum of two attribute
handles, one for the Characteristic Declaration and the other for the Value. However there is no need
for the smartBASIC apps developer to access it, so it is not exposed. Access is not required because
the characteristic was created by the application developer and so shall already know its content –
which never changes once created.

BLECHARCOMMIT (hService,attr$,charHandle)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

hService
byVal hService AS INTEGER
This is the handle of the service to which the characteristic belongs, which in turn was created using
the function BleSvcCommit().

Other descriptors added successfully

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

238

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

attr$
byRef attr$ AS STRING
This string contains the initial value of the value attribute in the characteristic. The content of this
string is copied into the GATT table and the variable can be reused after this function returns.

charHandle

byRef charHandle AS INTEGER
The composite handle for the newly created characteristic is returned in this argument. It is zero if the
function fails with a non-zero result code. This handle is then used as an argument in subsequent
function calls to perform read/write actions, so it is must be placed in a global smartBASIC variable.
When a significant event occurs as a result of action by a remote client, an event message is sent to
the application which can be serviced using a handler. That message contains a handle field
corresponding to this composite characteristic handle. Standard procedure is to select on that value to
determine for which characteristic the message is intended.
See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD, EVCHARDESC.

Example:

 // Example :: BleCharCommit.sb (See in BT900CodeSnippets.zip)

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 DIM rc

 DIM attr$,usrDesc$: usrDesc$="A description"

 DIM hHtsSvc //composite handle for hts primary service

 DIM mdCharVal : mdCharVal = BleAttrMetaData(1,1,20,0,rc)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,rc)

 DIM hHtsMeas //composite handle for htsMeas characteristic

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 rc=BleServiceNew(BLE_SERVICE_PRIMARY, BleHandleUuid16(0x1809), hHtsSvc)

 //--

 //Create the Measurement Characteristic object, add user description descriptor

 //--

 rc=BleCharNew(0x2A,BleHandleUuid16(0x2A1C),mdCharVal,mdCccd,0)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 //--

 //Commit the characteristics with some initial data

 //--

 attr$="hello\00worl\64"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

239

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 IF BleCharCommit(hHtsSvc,attr$,hHtsMeas)==0 THEN

 PRINT "\nCharacteristic Commited"

 ELSE

 PRINT "\nFailed"

 ENDIF

 rc=BleServiceCommit(hHtsSvc)

 //the characteristic will now be visible in the GATT table

 //and is refrenced by ‘hHtsMeas’for subsequent calls

Expected Output:

BleCharValueRead

FUNCTION

This function reads the current content of a characteristic identified by a composite handle that was previously
returned by the function BleCharCommit().

In most cases a read will be performed when a GATT client writes to a characteristic value attribute. The write
event is presented asynchronously to the smartBASIC application in the form of EVCHARVAL event. This
function will most often be accessed from the handler that services that event.

BLECHARVALUEREAD (charHandle,attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle

byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be read which was returned when
BleCharCommit() was called.

attr$
byRef attr$ AS STRING
This string variable contains the new value from the characteristic.

Example:

//Example :: BleCharValueRead.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc, conHndl

 //==

 // Initialise and instantiate service, characteristic,

 //==

Characteristic Commited

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

240

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 FUNCTION OnStartup()

 DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$: attr$="Hi"

 //commit service

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 //initialise scan report

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,150,0,0)

 ENDFUNC rc

 //==

 // New char value handler

 //==

 FUNCTION HndlrChar(BYVAL chrHndl, BYVAL offset, BYVAL len)

 dim s$

 IF chrHndl == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from offset ";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 rc=BleAdvertStop()

 rc=BleDisconnect(conHndl)

 ENDFUNC 0

 //==

 // Get the connnection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtn)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

241

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 conHndl=nCtn

 ENDFUNC 1

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BT900 and send a new value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVCHARVAL CALL HndlrChar

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

BleCharValueWrite

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a
composite handle returned by the function BleCharCommit().

BLECHARVALUEWRITE (charHandle,attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle

byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was returned when
BleCharCommit() was called.

attr$
byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

Example:

Characteristic value attribute: Hi

Connect to BT900 and send a new value

New characteristic value: Laird

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

242

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//Example :: BleCharValueWrite.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$: attr$="Hi"

 //commit service

 rc = BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x4A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc = BleServiceCommit(hSvc)

 ENDFUNC rc

 //==

 // Uart Rx handler - write input to characteristic

 //==

 FUNCTION HndlrUartRx()

 TimerStart(0,10,0)

 ENDFUNC 1

 //==

 // Timer0 timeout handler

 //==

 FUNCTION HndlrTmr0()

 DIM t$: rc=UartRead(t$)

 rc = BleCharValueWrite(hMyChar,t$)

 IF rc==0 THEN

 PRINT "\nNew characteristic value: ";t$

 ELSE

 PRINT "\nFailed to write new characteristic value ";integer.h'rc;"\n"

 ENDIF

 ENDFUNC 0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

243

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nType a new value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVTMR0 CALL HndlrTmr0

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

BleCharValueNotify

FUNCTION

If there is BLE connection, this function writes new data into the VALUE attribute of a characteristic so that it can
be sent as a notification to the GATT client. The characteristic is identified by a composite handle that is
returned by the function BleCharCommit().

A notification does not result in an acknowledgement from the client.

BLECHARVALUENOTIFY (charHandle,attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle
byVal charHandle AS INTEGER
This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() is called.

attr$
byRef attr$ AS STRING
String variable containing new value to write to the characteristic and then send as a notification to
the client. If there is no connection, this function fails with an appropriate result code.

 Example:

 //Example :: BleCharValueNotify.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

Characteristic value attribute: Hi

Send a new value

Laird

New characteristic value: Laird

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

244

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

245

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 value$="hello"

 IF BleCharValueNotify(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to notify new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful notification of new value"

 EXITFUNC 0

 ENDIF

 ELSE

 PRINT " : Notifications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BT900 will then notify your device of a new characteristic value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

246

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\nExiting..."

Expected Output:

BleCharValueIndicate

FUNCTION

If there is BLE connection, this function is used to write new data into the VALUE attribute of a characteristic so
that it can be sent as an indication to the GATT client. The characteristic is identified by a composite handle
returned by the function BleCharCommit().

An indication results in an acknowledgement from the client and that is presented to the smartBASIC application
as the EVCHARHVC event.

BLECHARVALUEINDICATE (charHandle,attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle
byVal charHandle AS INTEGER
This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() was called.

attr$
byRef attr$ AS STRING
String variable containing new value to write to the characteristic and then to send as a notification to
the client. If there is no connection, this function fails with an appropriate result code.

Example:

 //Example :: BleCharValueIndicate.sb (See in BT900CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

Characteristic Value: Hi

You can connect and write to the CCCD characteristic.

The BT900 will then notify your device of a new characteristic value

--- Connected to client

CCCD Val: 0 : Notifications have been disabled by client

CCCD Val: 1 : Notifications have been enabled by client

Successful notification of new value

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

247

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x22,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit(hSvc)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal)

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Indications have been enabled by client"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

248

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 value$="hello"

 rc=BleCharValueIndicate(hMyChar,value$)

 IF rc!=0 THEN

 PRINT "\nFailed to indicate new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful indication of new value"

 EXITFUNC 1

 ENDIF

 ELSE

 PRINT " : Indications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //==

 // Indication Acknowledgement Handler

 //==

 FUNCTION HndlrChrHvc(BYVAL charHandle)

 IF charHandle == hMyChar THEN

 PRINT "\n\nGot confirmation of recent indication"

 ELSE

 PRINT "\n\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVCHARHVC CALL HndlrChrHvc

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BT900 will then indicate a new characteristic value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

249

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 WAITEVENT

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 PRINT "\nExiting..."

Expected Output:

BleCharDescRead

FUNCTION

This function reads the current content of a writable Characteristic Descriptor identified by the two parameters
supplied in the EVCHARDESC event message after a GATT client writes to it.

In most cases a local read is performed when a GATT client writes to a characteristic descriptor attribute. The
write event is presented asynchronously to the smartBASIC application in the form of an EVCHARDESC event
and so this function is most often accessed from the handler that services that event.

BLECHARDESCREAD (charHandle,nDescHandle,nOffset,nLength,nDescUuidHandle,attr$))

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

charHandle
byVal charHandle AS INTEGER
This is the handle to the characteristic whose descriptor must be read which is returned when
BleCharCommit() is called and is been supplied in the EVCHARDESC event message.

nDescHandle
byVal nDescHandle AS INTEGER
This is an index into an opaque array of descriptor handles inside the charHandle and is supplied
as the second parameter in the EVCHARDESC event message.

nOffset
byVal nOffset AS INTEGER
This is the offset into the descriptor attribute from which the data shoud be read and copied
into attr$.

Characteristic Value: Hi

You can connect and write to the CCCD characteristic.

The BT900 will then indicate a new characteristic value

--- Connected to client

CCCD Val: 0 : Indications have been disabled by client

CCCD Val: 2 : Indications have been enabled by client

Successful indication of new value

Got confirmation of recent indication

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

250

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nLength
byVal nLength AS INTEGER
This is the number of bytes to read from the descriptor attribute from offset nOffset and copied
into attr$.

nDescUuidHandle
byRef nDescUuidHandle AS INTEGER
On exit, this is updated with the uuid handle of the descriptor that got updated.

attr$
byRef attr$ AS STRING

On exit, this string variable contains the new value from the characteristic descriptor.

Example:

 //Example :: BleCharDescRead.sb (See in BT900CodeSnippets.zip)

 DIM rc,conHndl,hMyChar

 //--

 //Create some PRIMARY service attribure which has a uuid of 0x18FF

 //--

 SUB OnStartup()

 DIM hSvc,attr$,scRpt$,adRpt$,addr$

 rc=BleSvcCommit(1,BleHandleUuid16(0x18FF),hSvc)

 // Add one or more characteristics

 rc=BleCharNew(0x0a,BleHandleUuid16(0x2AFF),BleAttrMetadata(1,1,20,1,rc),0,0)

 //Add a user description

 DIM s$: s$="You can change this"

 rc=BleCharDescAdd(0x2999,s$,BleAttrMetadata(1,1,20,1,rc))

 //commit characteristic

 attr$="\00" //no initial alert

 rc = BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 char handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,0x2AFF,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,200,0,0)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

251

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler - Just to get the connection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 ENDFUNC 1

 //==

 // Handler to service writes to descriptors by a GATT client

 //==

 FUNCTION HandlerCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)

 DIM instnc,nUuid,a$, offset,duid

 IF hChar == hMyChar THEN

 rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$)

 IF rc==0 THEN

 PRINT "\nRead 20 bytes from index ";offset;" in new char value."

 PRINT "\n ::New Descriptor Data: ";StrHexize$(a$);

 PRINT "\n ::Length=";StrLen(a$)

 PRINT "\n ::Descriptor UUID ";integer.h' duid

 EXITFUNC 0

 ELSE

 PRINT "\nCould not access the uuid"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //install a handler for writes to characteristic values

 ONEVENT EVCHARDESC CALL HandlerCharDesc

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 OnStartup()

 PRINT "\nWrite to the User Descriptor with UUID 0x2999"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

252

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //wait for events and messages

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

GATT Client Functions

This section describes all functions related to GATT client capability which enables interaction with GATT servers
of a connected BLE device. The Bluetooth Specification 4.0 and newer allows for a device to be a GATT server
and/or GATT client simultaneously; the fact that a peripheral mode device accepts a connection and has a GATT
server table does not preclude it from interacting with a GATT table in the central role device with which it is
connected.

These GATT client functions allow the developer to discover services, characteristics and descriptors, read and
write to characteristics and descriptors, and handle either notifications or indications.

To interact with a remote GATT server, it is important to have a good understanding of how it is constructed. It
is best to see it as a table consisting of many rows and three visible columns (handle, type, value) and at least
one more invisible column whose content affects access to the data column.

16 bit Handle Type (16 or 128 bit) Value (1 to 512 bytes) Permissions

These rows are grouped into collections called services and characteristics. The grouping is achieved by creating
a row with Type = 0x2800 or 0x2801 for services (primary and secondary respectively) and 0x2803 for
characteristics.

A table should be scanned from top to bottom; the specification stipulates that the 16-bit handle field contains
values in the range 1 to 65535 and SHALL be in ascending order. Gaps are allowed.

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the Type column, then it is
understood as the start of a primary or secondary service which in turn contains at least one charactestic or one
‘included service’ which have Type=0x2803 and 0x2802 respectively.

When a row with Type = 0x2803 (a characteristic) is encountered, then the next row contains the value for that
characteristic; afterwards, there may be zero or more descriptors.

Write to the User Descriptor with UUID 0x2999

Read 20 bytes from index 0 in new char value.

 ::New Descriptor Data: 4C61697264

 ::Length=5

 ::Descriptor UUID FE012999

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

253

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

This means each characteristic consists of at least two rows in the table; and if descriptors exist for that
characteristic, then a single row per descriptor.

Handle Type Value Comments

0x0001 0x2800 UUID of the Service Primary Service 1 Start

0x0002 0x2803 Properties, Value Handle, Value UUID1 Characteristic 1 Start

0x0003 Value UUID1 Value : 1 to 512 bytes Actual data

0x0004 0x2803 Properties, Value Handle, Value UUID2 Characteristic 2 Start

0x0005 Value UUID2 Value : 1 to 512 bytes Actual data

0x0006 0x2902 Value Descriptor 1(CCCD)

0x0007 0x2903 Value Descriptor 2 (SCCD)

0x0008 0x2800 UUID of the Service Primary Service 2 Start

0x0009 0x2803 Properties, Value Handle, Value UUID3 Characteristic 1 Start

0x000A Value UUID3 Value : 1 to 512 bytes Actual data

0x000B 0x2800 UUID of the Service Primary Service 3 Start

0x000C 0x2803 Properties, Value Handle, Value UUID3 Characteristic 3 Start

0x000D Value UUID3 Value : 1 to 512 bytes Actual data

0x000E 0x2902 Value Descriptor 1(CCCD)

0x000F 0x2903 Value Descriptor 2 (SCCD)

0x0010 0x2904 Value (presentation format data) Descriptor 3

0x00111 0x2906 Value (valid range) Descriptor 4 (Range)

A colour highlighted example of a GATT server table is shown above. There are three services (at handles
0x0001,0x0008 and 0x000B) because there are three rows where the Type = 0x2803. All rows up to the next
instance of a row with Type=0x2800 or 2801 belong to that service.

In each group of rows for a service, there is one or more characteristics where Type=0x2803. For example the
service beginning at handle 0x0008 has one characteristic which contains two rows identified by handles 0x0009
and 0x000A and the actual value for the characteristic starting at 0x0009 is in the row identified by 0x000A.

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it)up to a row with type
= 0x2800/2801/2803) are considered belonging to that characteristic. For example, the characteristic at row
with handle = 0x0004 has the mandatory value row and then two descriptors.

The Bluetooth specification allows for multiple instances of the same service or characteristics or descriptors
and they are differentiated by the unique handle. This ensures no ambiguity.

Each GATT server table allocates the handle numbers, the only stipulation being that they be in ascending order
(gaps are allowed). This is important to understand because two devices containing the same services and
characteristic and in EXACTLY the same order may NOT allocate the same handle values, especially if one device
increments handles by 1 and another with some other arbitrary random value. The specification does stipulate
that once the handle values are allocated, they are fixed for all subsequent connections unless the device

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

254

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

exposes a GATT service which allows for indications to the client that the handle order has changed and thus
force it to flush its cache and rescan the GATT table.

When a connection is first established, there is no prior knowledge as to which services exist or their handles.
Therefore, the GATT protocol which is used to interact with GATT servers, provides procedures that allow for the
GATT table to be scanned so that the client can ascertain which services are offered. This section describes
smartBASIC functions which encapsulate and manage those procedures to enable a smartBASIC application to
map the table.

These helper functions have been written to help gather the handles of all the rows which contain the value
type for appropriate characteristics as those are the ones that will be read or written to. The smartBASIC
internal engine also maintains data objects so that it is possible to interact with descriptors associated with the
characteristic.

Basically, the table scanning process reveals characteristic handles (as handles of handles) which are used in
other GATT client related smartBASIC functions to interact with the table to, for example, read/write or accept
and process incoming notifications and indications.

This approach ensures that the least amount of RAM resource is required to implement a GATT client and, given
that these procedures operate at speeds many orders of magnitude slower compared to the speed of the CPU
and energy consumption is to be kept as low as possible, the response to a command is delivered
asynchronously as an event for which a handler must be specified in the user smartBASIC application.

The rest of this chapter details all GATT client commands, responses, and events along with example code
demonstrating usage and expected output.

Events and Messages

The nature of GATT client operation consists of multiple queries and acting on the responses. Because the
connection intervals are slower than the CPU speed, responses can arrive many tens of milliseconds after the
procudure is triggered; these are delivered to an application using an event or message. Since these
event/messages are tightly coupled with the appropriate commands, all but one is described when the
command that triggers them is described.

The event EVGATTCTOUT is applicable for all GATT client-related functions which result in transactions over the
air. The Bluetooth specification states that if an operation is initiated and is not completed within 30 seconds
then the connection is dropped as no further GATT client transaction can be initiated.

EVGATTCTOUT

This event message is thrown if a GATT client transaction takes longer than 30 seconds. It contains one INTEGER
parameter:

 Connection Handle

Example:

//Example :: EVGATTCTOUT.sb (See in BT900CodeSnippets.zip)

//

DIM rc,conHndl

//==

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

255

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGATTcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected"

 ENDIF

ENDFUNC 1

'//==

'//==

FUNCTION HandlerGATTcTout(cHndl) AS INTEGER

 PRINT "\nEVGATTCTOUT connHandle=";cHndl

ENDFUNC 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVGATTCTOUT call HandlerGATTcTout

rc = OnStartup()

WAITEVENT

Expected Output:

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

256

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVDISCPRIMSVC

This event message is thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a success. The
message contains the following four INTEGER parameters:

Connection Handle
Service UUID Handle
Start Handle of the service in the GATT table
End Handle for the service

If no additional services were discovered because the end of the table was reached, then all parameters contain
zero apart from the Connection Handle.

EVDISCCHAR

This event message is thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success. The message
contains the following INTEGER parameters:

Connection Handle
Characteristic UUID Handle
Characteristic properties
Handle for the value attribute of the characteristic
Included Service UUID Handle

If no more characteristics were discovered because the end of the table was reached, then all parameters
contain zero apart from the Connection Handle.

‘Characteristic Uuid Handle’ contains the UUID of the characteristic and supplied as a handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Bit 0 Set if BROADCAST is enabled

Bit 1 Set if READ is enabled

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled

Bit 3 Set if WRITE is enabled

Bit 4 Set if NOTIFY is enabled

Bit 5 Set if INDICATE is enabled

Bit 6 Set if AUTHENTICATED_SIGNED_WRITE is enabled

Bit 7 Set if RELIABLE_WRITE is enabled

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to
store to keep track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and is always 0.

. . .

. . .

EVGATTCTOUT connHandle=123

. . .

. . .

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

257

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

EVDISCDESC

This event message is thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success. The message
contains the following INTEGER parameters:

Connection Handle
Descriptor Uuid Handle
Handle for the Descriptor in the remote GATT Table

If no more descriptors were discovered because the end of the table was reached, then all parameters contain
zero apart from the Connection Handle.

‘Descriptor Uuid Handle’ contains the UUID of the descriptor and is supplied as a handle.

‘Handle for the Descriptor in the remote GATT Table’ is the handle for the descriptor as well as the value to
store to keep track of important characteristics in a GATT server for later read/write operations.

EVFINDCHAR

This event message is thrown if BleGATTcFindChar() returns a success. The message contains the following
INTEGER parameters:

Connection Handle
Characteristic Properties
Handle for the Value Attribute of the Characteristic
Included Service Uuid Handle

If the specified instance of the service/characteristic is not present in the remote GATT server table, then all
parameters contain zero apart from the Connection Handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Bit Description

0 Set if BROADCAST is enabled

1 Set if READ is enabled

2 Set if WRITE_WITHOUT_RESPONSE is enabled

3 Set if WRITE is enabled

4 Set if NOTIFY is enabled

5 Set if INDICATE is enabled

6 Set if AUTHENTICATED_SIGNED_WRITE is enabled

7 Set if RELIABLE_WRITE is enabled

15 Set if the characteristic has extended properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to
store to keep track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and is always 0.

EVFINDDESC

This event message is thrown if BleGATTcFindDesc() returned a success. The message contains the following
INTEGER parameters:

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

258

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Connection Handle
Handle of the Descriptor

If the specified instance of the service/characteristic/descriptor is not present in the remote GATT server table,
then all parameters contain zero apart from the Connection Handle.

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track of important
descriptors in a GATT server for later read/write operations – for example, CCCDs to enable notifications and/or
indications.

EVATTRREAD

This event message is thrown if BleGattcRead() returns a success. The message contains the following INTEGER
parameters:

Connection Handle
Handle of the Attribute
GATT status of the read operation

‘GATT status of the read operation’ is one of the following values, where 0 implies the read was successfully
expedited and the data can be obtained by calling BlePubGattClientReadData().

0x0000 Success

0x0001 Unknown or not applicable status

0x0100 ATT Error: Invalid Error Code

0x0101 ATT Error: Invalid Attribute Handle

0x0102 ATT Error: Read not permitted

0x0103 ATT Error: Write not permitted

0x0104 ATT Error: Used in ATT as Invalid PDU

0x0105 ATT Error: Authenticated link required

0x0106 ATT Error: Used in ATT as Request Not Supported

0x0107 ATT Error: Offset specified was past the end of the attribute

0x0108 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 ATT Error: Used in ATT as Prepare Queue Full

0x010A ATT Error: Used in ATT as Attribute not found

0x010B ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C ATT Error: Encryption key size used is insufficient

0x010D ATT Error: Invalid value size

0x010E ATT Error: Very unlikely error

0x010F ATT Error: Encrypted link required

0x0110 ATT Error: Attribute type is not a supported grouping attribute

0x0111 ATT Error: Encrypted link required

0x0112 ATT Error: Reserved for Future Use range #1 begin

0x017F ATT Error: Reserved for Future Use range #1 end

0x0180 ATT Error: Application range begin

0x019F ATT Error: Application range end

0x01A0 ATT Error: Reserved for Future Use range #2 begin

0x01DF ATT Error: Reserved for Future Use range #2 end

0x01E0 ATT Error: Reserved for Future Use range #3 begin

0x01FC ATT Error: Reserved for Future Use range #3 end

0x01FD ATT Common Profile and Service Error: Client Characteristic Configuration Descriptor

 (CCCD)improperly configured

0x01FE ATT Common Profile and Service Error:Procedure Already in Progress

0x01FF ATT Common Profile and Service Error: Out Of Range

EVATTRWRITE

This event message is thrown if BleGattcWrite() returns a success. The message contains the following INTEGER
parameters:

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

259

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Connection Handle
Handle of the Attribute
GATT status of the write operation

‘GATT status of the write operation’ is one of the following values, where 0 implies the write was successfully
expedited.

0x0000 Success

0x0001 Unknown or not applicable status

0x0100 ATT Error: Invalid Error Code

0x0101 ATT Error: Invalid Attribute Handle

0x0102 ATT Error: Read not permitted

0x0103 ATT Error: Write not permitted

0x0104 ATT Error: Used in ATT as Invalid PDU

0x0105 ATT Error: Authenticated link required

0x0106 ATT Error: Used in ATT as Request Not Supported

0x0107 ATT Error: Offset specified was past the end of the attribute

0x0108 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 ATT Error: Used in ATT as Prepare Queue Full

0x010A ATT Error: Used in ATT as Attribute not found

0x010B ATT Error: Attribute cannot be read or written

 using read/write blob requests

0x010C ATT Error: Encryption key size used is insufficient

0x010D ATT Error: Invalid value size

0x010E ATT Error: Very unlikely error

0x010F ATT Error: Encrypted link required

0x0110 ATT Error: Attribute type is not a supported grouping attribute

0x0111 ATT Error: Encrypted link required

0x0112 ATT Error: Reserved for Future Use range #1 begin

0x017F ATT Error: Reserved for Future Use range #1 end

0x0180 ATT Error: Application range begin

0x019F ATT Error: Application range end

0x01A0 ATT Error: Reserved for Future Use range #2 begin

0x01DF ATT Error: Reserved for Future Use range #2 end

0x01E0 ATT Error: Reserved for Future Use range #3 begin

0x01FC ATT Error: Reserved for Future Use range #3 end

0x01FD ATT Common Profile and Service Error:

 Client Characteristic Configuration Descriptor (CCCD)

 improperly configured

0x01FE ATT Common Profile and Service Error:

 Procedure Already in Progress

0x01FF ATT Common Profile and Service Error:

 Out Of Range

EVNOTIFYBUF

This event message is thrown if BleGattcWriteCmd() returned a success. The message contains no parameters.

EVATTRNOTIFY

This event is thrown when an notification or an indication arrives from a GATT server. The event contains no
parameters. Please note that if one notification/indication arrives or many, like in the case of UART events, the
same event mask bit is asserted. The smartBASIC application is informed that it must go and service the ring
buffer using the function BleGattcNotifyRead.

BleGattcOpen

FUNCTION

This function is used to initialise the GATT client functionality for immediate use so that appropriate buffers for
caching GATT responses are created in the heap memory. About 300 bytes of RAM is required by the GATT client

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

260

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

manager; given that a majority of BT900 use cases do not use it, the sacrifice of 300 bytes (nearly 15% of the
available memory) is not worth the permament allocation of memory.

There are various buffers that are needed for scanning a remote GATT table which are of fixed size. The ring
buffer can be configured by the smartBASIC apps developer; this buffer is used to store incoming notifiable and
indicatable characteristics. At the time of writing this user guide, the default minimum size is 64 unless a bigger
one is desired; in that case, the input parameter to this function specifies that size. A maximum of 2048 bytes is
allowed, but this can result in unreliable operation as the smartBASIC runtime engine is quickly starved of
memory.

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum allowed. The
same information can be obtained in interactive mode using the commands AT I 2019 and 2020 respectively.

Note: When the ring buffer for the notifiable and indicatable characteristics is full, then any new messages
are discarded and, depending on the flags parameter, the indicates are or are not confirmed.

This function is safe to call when the GATT client manager is already open. However, in that case, the
parameters are ignored and existing values are retained. Existing GATT client operations are not interrupted.

It is recommended that this function NOT be called when in a connection.

BLEGATTCOPEN (nNotifyBufLen, nFlags)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

nNotifyBufLen
byVal nNotifyBufLen AS INTEGER
This is the size of the ring buffer used for incoming notifiable and indicatable characteristic data.
Set to 0 to use the default size.

nFlags

byVal nFlags AS INTEGER
Bit 0 – Set to 1 to disable automatic indication confirmations. If the buffer is full then the Handle
Value Confirmation is only sent when BleGattcNotifyRead() is called to read the ring buffer.
Bit 1..31 – Reserved for future use and must be set to 0s.

Example:

 //Example :: BleGattcOpen.sb (See in BT900CodeSnippets.zip)

DIM rc

//open the GATT client with default notify/indicate ring buffer size

rc = BleGATTcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGATT Client is now open"

ENDIF

//open the client with default notify/indicate ring buffer size - again

rc = BleGattcOpen(128,1)

IF rc == 0 THEN

 PRINT "\nGATT Client is still open, because already open"

ENDIF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

261

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleGattcClose

SUBROUTINE

This function is used to close the GATT client manager and is safe to call if it is already closed.

It is recommended that this function NOT be called when in a connection.

BLEGATTCCLOSE ()

Returns

Arguments None

Interactive Command No

Example:

//Example :: BleGattcClose.sb (See in BT900CodeSnippets.zip)

DIM rc

//open the GATT client with default notify/indicate ring buffer size

rc = BleGattcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGATT Client is now open"

ENDIF

BleGattcClose()

PRINT "\nGATT Client is now closed"

BleGattcClose()

PRINT "\nGATT Client is closed - was safe to call when already closed"

Expected Output:

GATT Client is now open

GATT Client is still open, because already open

GATT Client is now open

GATT Client is now closed

GATT Client is closed - was safe to call when already closed

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

262

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleDiscServiceFirst / BleDiscServiceNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for all primary services with the help of the
EVDISCPRIMSVC message event. When called, a handler for the event message must be registered as the
discovered primary service information is passed back in that message.

A generic or UUID-based scan can be initiated. The former scans for all primary services and the latter scans for a
primary service with a particular UUID, the handle of which must be supplied and is generated by using either
BleHandleUuid16() or BleHandleUuid128().

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low
power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all primary may
take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations
such as servicing sensors and displays or any of the onboard peripherals.

BLEDISCSERVICEFIRST (connHandle,startAttrHandle,uuidHandle)

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(), then waiting for
the EVDISCPRIMSVC event message and depending on the information returned in that message calling
BleDiscServiceNext(), which in turn will result in another EVDISCPRIMSVC event message and typically is as
follows:

Register a handler for the EVDISCPRIMSVC event message

On EVDISCPRIMSVC event message

 If Start/End Handle == 0 then scan is complete

 Else Process information then

 call BleDiscServiceNext()

 if BleDiscServiceNext() not OK then scan complete

Call BleDiscServiceFirst()

If BleDiscServiceFirst() ok then Wait for EVDISCPRIMSVC

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. This means
an EVDISCPRIMSVC event message is thrown by the smartBASIC runtime engine containing the
results. A non-zero return value implies an EVDISCPRIMSVC message is NOT thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId
== 0 and msgCtx is the connection handle.

startAttrHandle
byVal startAttrHandle AS INTEGER
This is the attribute handle from where the scan for primary services will be started and you can
typically set it to 0 to ensure that the entire remote GATT Server is scanned

uuidHandle
byVal uuidHandle AS INTEGER
Set this to 0 if you want to scan for any service, otherwise this value will have been generated
either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

BLEDISCSERVICENEXT (connHandle)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

263

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Calling this assumes that BleDiscServiceFirst() was called at least once to set up the internal primary services
scanning state machine.

Returns INTEGER, a result code.
The typical value is 0x0000, indicating a successful operation and it means an EVDISCPRIMSVC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCPRIMSVC message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 0
and msgCtx is the connection handle

Example:

//Example :: BleDiscServiceFirst.Next.sb (See in BT900CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscPrimSvc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

264

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for ALL services"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 PRINT "\nScan for service with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

265

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nScan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscServiceNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nScan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

266

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

267

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleDiscCharFirst / BleDiscCharNext

FUNCTIONS

These pair of functions are used to scan the remote GATT server for characteristics in a service with the help of
the EVDISCCHAR message event. When called, a handler for the event message must be registered because the
discovered characteristics information is passed back in that message.

A generic or UUID based scan can be initiated. The generic version scans for all characteristics; the UUID version
scans for a characteristic with a particular UUID, the handle of which must be supplied and is generated by using
either BleHandleUuid16() or BleHandleUuid128().

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE01 sHndl=1 eHndl=3

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9

EVDISCPRIMSVC : cHndl=2804 svcUuid=FB04BEEF sHndl=10 eHndl=12

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE03 sHndl=19 eHndl=21

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=24

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

Scan for service with uuid = 0xDEAD

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=65535

Scan abort

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

- Disconnected

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

268

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

If a GATT table has a specific service and a specific characteristic, then it is more efficient to locate details of that
characteristic by using the function BleGATTcFindChar(). This function is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low
power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all
characteristics may take many hundreds of milliseconds. While this is in progress, it is safe to do other non-
GATT-related operations such as servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is planned for a future
release.

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle,endAttrHandle)

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with information
obtained from a primary services scan, waiting for the EVDISCCHAR event message, and (depending on the
information returned in that message) calling BleDiscCharNext(). This in turn results in another EVDISCCHAR
event message and typically is as follows:

Register a handler for the EVDISCCHAR event message

On EVDISCCHAR event message

 If Char Value Handle == 0 then scan is complete

 Else Process information then

 call BleDiscCharNext()

 if BleDiscCharNext() not OK then scan complete

Call BleDiscCharFirst(--information from EVDISCPRIMSVC)

If BleDiscCharFirst() ok then Wait for EVDISCCHAR

Returns INTEGER, a result code.
The typical value is 0x0000, indicating a successful operation and it means an EVDISCCHAR event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return
value implies an EVDISCCHAR message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgId == 0 and msgCtx is the connection handle.

charUuidHandle
byVal charUuidHandle AS INTEGER
Set this to 0 if you want to scan for any characteristic in the service, otherwise this value is
generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

startAttrHandle
byVal startAttrHandle AS INTEGER
This is the attribute handle from where the scan for characteristic is started and is acquired by
doing a primary services scan, which returns the start and end handles of services.

endAttrHandle
byVal endAttrHandle AS INTEGER
This is the end attribute handle for the scan and is acquired by doing a primary services scan,
which returns the start and end handles of services.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

269

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BLEDISCCHARNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics
scanning state machine. It scans for the next characteristic.

Returns INTEGER, a result code.
The typical value is 0x0000, indicating a successful operation. It means an EVDISCCHAR event message
is thrown by the smartBASIC runtime engine containing the results. A non-zero return value implies an
EVDISCCHAR message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId ==
0 and msgCtx is the connection handle.

Example:

//Example :: BleDiscCharFirst.Next.sb (See in BT900CodeSnippets.zip)

//

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

270

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for characteristic with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc == 0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc==0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

271

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscCharNext(conHndl)

 IF rc != 0 THEN

 PRINT "\nCharacteristics scan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

272

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

OnEvent EVDISCCHAR call HandlerCharDisc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

273

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event

EVDISCPRIMSVC : cHndl=3549 svcUuid=FE01FE02 sHndl=1 eHndl=17

Got first primary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3549 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FB04BEEF Props=2 valHndl=9 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01FC23 Props=2 valHndl=13 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

Scan for characteristic with uuid = 0xDEAD

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

- Disconnected

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

274

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleDiscDescFirst /BleDiscDescNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for descriptors in a characteristic with the help of
the EVDISCDESC message event. When called, a handler for the event message must be registered because the
discovered descriptor information is passed back in that message.

A generic or UUID-based scan can be initiated. The generic version scans for all descriptors; The UUID version
scans for a descriptor with a particular UUID, the handle of which must be supplied and is generated by using
either BleHandleUuid16() or BleHandleUuid128().

If a GATT table has a specific service, characteristic, and a specific descriptor, then it is more efficient to locate
the characteristic’s details by using the function BleGATTcFindDesc(). This is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low
power state as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all descriptors
may take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related
operations such as servicing sensors and displays or any of the onboard peripherals.

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle)

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with information
obtained from a characteristics scan and then waiting for the EVDISCDESC event message. Depending on the
information returned in that message, calling BleDiscDescNext() results in another EVDISCDESC event message
and typically is as follows:

Register a handler for the EVDISCDESC event message

On EVDISCDESC event message

 If Descriptor Handle == 0 then scan is complete

 Else Process information then

 call BleDiscDescNext()

 if BleDiscDescNext() not OK then scan complete

Call BleDiscDescFirst(--information from EVDISCCHAR)

If BleDiscDescFirst() ok then Wait for EVDISCDESC

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC
event message is thrown by the smartBASIC runtime engine containing the results. A non-
zero return value implies an EVDISCDESC message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT server can be accessed. This is returned in the EVBLEMSG event
message with msgId == 0 and msgCtx is the connection handle.

descUuidHandle
byVal descUuidHandle AS INTEGER
Set this to 0 if you want to scan for any descriptor in the characteristic, otherwise this value
is generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

275

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

charValHandle
byVal charValHandle AS INTEGER
This is the value attribute handle of the characteristic on which the descriptor scan is to be
performed. It will have been acquired from an EVDISCCHAR event.

BLEDISCDESCNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics
scanning state machine and that BleDiscDescFirst() has been called at least once to start the descriptor discovery
process.

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return
value implies an EVDISCDESC message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgId == 0 and msgCtx is the connection handle.

Example:

//Example :: BleDiscDescFirst.Next.sb (See in BT900CodeSnippets.zip)

//

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics

// which contains 8 descriptors, that are ...

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr,cValAttr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

276

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for descritors with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc == 0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc==0 THEN

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

277

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

278

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first characteristic service at handle ";hVal

 PRINT "\nScan for ALL Descs"

 cValAttr = hVal

 rc = BleDiscDescFirst(conHndl,0,cValAttr)

 IF rc != 0 THEN

 PRINT "\nScan descriptors failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCDESC event handler

'//==

function HandlerDescDisc(cHndl,cUuid,hndl) as integer

 print "\nEVDISCDESC"

 print " cHndl=";cHndl

 print " dscUuid=";integer.h' cUuid

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDescriptor Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscDescNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nDescriptor scan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

279

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

OnEvent EVDISCDESC call HandlerDescDisc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

280

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleGattcFindChar

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event

EVDISCPRIMSVC : cHndl=3790 svcUuid=FE01FE02 sHndl=1 eHndl=11

Got first primary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3790 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0

Got first characteristic service at handle 3

Scan for ALL Descs

EVDISCDESC cHndl=3790 dscUuid=FE01FD21 dscHndl=4

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6

EVDISCDESC cHndl=3790 dscUuid=FB04BEEF dscHndl=7

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=FE01FD23 dscHndl=9

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

Scan for descritors with uuid = 0xDEAD

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

- Disconnected

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

281

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

FUNCTION

This function facilitates an efficient way of locating the details of a characteristic if the UUID is known along with
the UUID of the service containing it. The results are delived in an EVFINDCHAR event message. If the GATT
server table has multiple instances of the same service/characteristic combination then this function works
because, in addition to the UUID handles to be searched for, it also accepts instance parameters which are
indexed from 0. This means the fourth instance of a characteristic with the same UUID in the third instance of a
service with the same UUID is located with index values 3 and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDCHAR
event.

Depending on the size of the remote GATT server table and the connection interval, the search of the
characteristic may take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-
related operations such as servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is a future
enhancement.

BLEGATTCFINDCHAR (connHandle, svcUuidHndl, svcIndex,charUuidHndl, charIndex)

A typical pseudo code for finding a characteristic involves calling BleGATTcFindChar() which in turn will result in
the EVFINDCHAR event message and typically is as follows:-

Register a handler for the EVFINDCHAR event message

On EVFINDCHAR event message

 If Char Value Handle == 0 then

 Characteristic not found

 Else

 Characteristic has been found

Call BleGATTcFindChar()

If BleGATTcFindChar () ok then Wait for EVFINDCHAR

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDCHAR
event message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVFINDCHAR message is not thrown.

Arguments:

connHandle

byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgId == 0 and msgCtx is the connection handle.

svcUuidHndl
byVal svcUuidHndl AS INTEGER
Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

svcIndex
byVal svcIndex AS INTEGER
This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is the
first instance, 1 is the second, and so on.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

282

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

charUuidHndl
byVal charUuidHndl AS INTEGER
Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

charIndex
byVal charIndex AS INTEGER
This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where
0 is the first instance, 1 is the second, and so on.

Example:

//Example :: BleGATTcFindChar.sb (See in BT900CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblFindChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

283

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for an instance of char"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1 //valHandle will be 32

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3 //does not exist

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindChar(cHndl,cProp,hVal,isUuid) as integer

 print "\nEVFINDCHAR "

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

284

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 print " cHndl=";cHndl

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nDid NOT find the characteristic"

 ELSE

 PRINT "\nFound the characteristic at handle ";hVal

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDCHAR call HandlerFindChar

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

285

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleGattcFindDesc

FUNCTION

This function facilitates an efficient way of locating the details of a descriptor if the UUID is known along with
the UUID of the service and the UUID of the characteristic containing it. The results are delivered in a
EVFINDDESC event message. If the GATT server table has multiple instances of the same
service/characteristic/descriptor combination then this function works because, in addition to the UUID handles
to be searched for, it accepts instance parameters which are indexed from 0. This means that the second
instance of a descriptor in the fourth instance of a characteristic with the same UUID in the third instance of a
service with the same UUID is located with index values 1, 3, and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDDESC
event.

Depending on the size of the remote GATT server table and the connection interval, the search of the
characteristic may take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-
related operations such as servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This planned for a future
release.

BLEGATTCFINDDESC (connHndl, svcUuHndl, svcIdx, charUuHndl, charIdx,descUuHndl, descIdx)

A typical pseudo code for finding a descrirptor involves calling BleGATTcFindDesc() which in turn results in the
EVFINDDESC event message and typically is as follows:

Register a handler for the EVFINDDESC event message

On EVFINDDESC event message

 If Descriptor Handle == 0 then

 Descriptor not found

 Else

 Descriptor has been found

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for an instance of char

EVFINDCHAR cHndl=866 Props=2 valHndl=32 ISvcUuid=0

Found the characteristic at handle 32

Svc Idx=2 Char Idx=1

EVFINDCHAR cHndl=866 Props=0 valHndl=0 ISvcUuid=0

Did NOT find the characteristic

- Disconnected

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

286

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Call BleGATTcFindDesc()

If BleGATTcFindDesc() ok then Wait for EVFINDDESC

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDDESC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVFINDDESC message is not thrown

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 0
and msgCtx is the connection handle.

svcUuHndl

byVal svcUuHndl AS INTEGER

Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

svcIdx
byVal svcIdx AS INTEGER
This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is the first
instance, 1 is the second, and so on.

charUuHndl
byVal charUuHndl AS INTEGER
Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

charIdx
byVal charIdx AS INTEGER
This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where 0 is the
first instance, 1 is the second, and so on.

descUuHndl
byVal descUuHndl AS INTEGER
Set this to the descriptor uuid handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

descIdx
byVal descIdx AS INTEGER
This is the instance of the descriptor to look for with the UUID handle charUuidHndl, where 0 is the first
instance, 1 is the second, and so on.

Example:

//Example :: BleGATTcFindDesc.sb (See in BT900CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblFindDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx,dIdx

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

287

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC,uHndD

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote GATT Table for ALL services"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 uu$ = "1122C0DE5566778899AABBCCDDEEFF00"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

288

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 uu$ = StrDehexize$(uu$)

 uHndD = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1

 dIdx = 1 // handle will be 37

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3

 dIdx = 4 //does not exist

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindDesc(cHndl,hndl) as integer

 print "\nEVFINDDESC "

 print " cHndl=";cHndl

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDid NOT find the descriptor"

 ELSE

 PRINT "\nFound the descriptor at handle ";hndl

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;" desc Idx=";dIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

289

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDDESC call HandlerFindDesc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services

EVFINDDESC cHndl=1106 dscHndl=37

Found the descriptor at handle 37

Svc Idx=2 Char Idx=1 desc Idx=1

EVFINDDESC cHndl=1106 dscHndl=0

Did NOT find the descriptor

- Disconnected

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

290

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleGattcRead/BleGattcReadData

FUNCTIONS

If the handle for an attribute is known, then these functions are used to read the content of that attribute from
a specified offset in the array of octets in that attribute value.

Given that the success or failure of this read operation is returned in an event message, a handler must be
registered for the EVATTRREAD event.

Depending on the connection interval, the read of the attribute may take many hundreds of milliseconds. While
this is in progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or
any of the onboard peripherals.

BleGATTcRead is used to trigger the procedure and BleGattcReadData is used to read the data from the
underlying cache when the EVATTRREAD event message is received with a success status.

BLEGATTCREAD (connHndl, attrHndl, offset)

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in turn results in the
EVATTRREAD event message and typically is as follows:

Register a handler for the EVATTRREAD event message

On EVATTRREAD event message

 If GATT_Status == 0 then

 BleGattcReadData() //to actually get the data

 Else

 Attribute could not be read

Call BleGattcRead()

If BleGattcRead() ok then Wait for EVATTRREAD

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVATTRREAD event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVATTRREAD message is not thrown.

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 0
and msgCtx is the connection handle.

attrHndl
byVal attrHndl AS INTEGER
Set to the handle of the attribute to read. It is a value in the range 1 to 65535.

offset
byVal offset AS INTEGER
This is the offset from which the data in the attribute is to be read.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

291

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$)

This function is used to collect the data from the underlying cache when the EVATTRREAD event message has a
success GATT status code.

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgId == 0 and msgCtx is the connection handle.

attrHndl
byRef attrHndl AS INTEGER
The handle for the attribute that was read is returned in this variable. It is the same as the one
supplied in BleGATTcRead, but supplied here so that the code can be stateless.

offset
byRef offset AS INTEGER
The offset into the attribute data that was read is returned in this variable. It is the same as the
one supplied in BleGATTcRead, but supplied here so that the code can be stateless.

attrData$
byRef attrData$ AS STRING
The attribute data which was read is supplied in this parameter.

Example:

//Example :: BleGATTcRead.sb (See in BT900CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,nOff,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

292

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so read attibute handle 3"

 atHndl = 3

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nread attibute handle 300 which does not exist"

 atHndl = 300

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrRead(cHndl,aHndl,nSts) as integer

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

293

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 dim nOfst,nAhndl,at$

 print "\nEVATTRREAD "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute read OK"

 rc = BleGattcReadData(cHndl,nAhndl,nOfst,at$)

 print "\nData = ";StrHexize$(at$)

 print " Offset= ";nOfst

 print " Len=";strlen(at$)

 print "\nhandle = ";nAhndl

 else

 print "\nFailed to read attribute"

 endif

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRREAD call HandlerAttrRead

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

294

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleGattcWrite

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute starting at offset 0.
The acknowledgement is returned via a EVATTRWRITE event message.

Given that the success or failure of this write operation is returned in an event message, a handler must be
registered for the EVATTRWRITE event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While
this is in progress, it is safe to do other non GATT related operations such as servicing sensors and displays or
any of the onboard peripherals.

BLEGATTCWRITE (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which results in the EVATTRWRITE event message and typically
is as follows:

Register a handler for the EVATTRWRITE event message

On EVATTWRITE event message

 If GATT_Status == 0 then

 Attribute was written successfully

 Else

 Attribute could not be written

Call BleGattcWrite()

If BleGattcWrite() ok then Wait for EVATTRWRITE

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRREAD cHndl=2960 attrHndl=3 status=00000000

Attribute read OK

Data = 00000000 Offset= 0 Len=4

handle = 3

read attibute handle 300 which does not exist

EVATTRREAD cHndl=2960 attrHndl=300 status=00000101

Failed to read attribute

- Disconnected

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

295

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 0
and msgCtx is the connection handle.

attrHndl
byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$
byRef attrData$ AS STRING
The attribute data to write.

Example:

//Example :: BleGATTcWrite.sb (See in BT900CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGATTcTblWrite.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

296

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attibute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attibute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

297

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRWRITE cHndl=2687 attrHndl=3 status=00000000

Attribute write OK

Write to attibute handle 300 which does not exist

EVATTRWRITE cHndl=2687 attrHndl=300 status=00000101

Failed to write attribute

- Disconnected

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

298

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleGattcWriteCmd

FUNCTION

If the handle for an attribute is known, then this function is used to write into an attribute at offset 0 when no
acknowledgment response is expected. The signal that the command has actually been transmitted and that the
remote link layer has acknowledged is by the EVNOTIFYBUF event.

Note: The acknowledgement received for the BleGattcWrite() command is from the higher level GATT layer.
Do not confuse this with the link layer ACK .

All packets are acknowledged at link layer level. If a packet fails to get through, then that condition
manifests as a connection drop due to the link supervision timeout.

Given that the transmission and link layer ACK of this write operation is indicated in an event message, a handler
must be registered for the EVNOTIBUF event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While
this is in progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or
any of the onboard peripherals.

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$)

The following is a typical pseudo code for writing to an attribute which results in the EVNOTIFYBUF event:

Register a handler for the EVNOTIFYBUF event message

On EVNOTIFYBUF event message

 Can now send another write command

Call BleGattcWriteCmd()

If BleGattcWrite() ok then Wait for EVNOTIFYBUF

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

connHndl

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgId == 0 and msgCtx is the connection handle.

attrHndl
byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$
byRef attrData$ AS STRING
The attribute data to write.

Example:

//Example :: BleGATTcWriteCmd.sb (See in BT900CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGATTcTblWriteCmd.sub invoked in _OpenMcp.scr

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

299

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attribute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

300

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\05\06\07\08"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\09\0A\0B\0C"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attribute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 PRINT "\nEven when the attribute does not exist an event will occur"

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerNotifyBuf() as integer

 print "\nEVNOTIFYBUF Event"

endfunc 0 '//need to progress the WAITEVENT

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVNOTIFYBUF call HandlerNotifyBuf

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

301

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BleGattcNotifyRead

FUNCTION

A GATT server has the ability to notify or indicate the value attribute of a characteristic when enabled via the
Client Characeristic Configuration Descriptor (CCCD). This means data arrives from a GATT server at any time and
must be managed so that it can synchronised with the smartBASIC runtime engine.

Data arriving via a notification does not require GATT acknowledgements, however indications require them.
This GATT client manager saves data arriving via a notification in the same ring buffer for later extraction using
the command BleGattcNotifyRead(); for indications, an automatic GATT acknowledgement is sent when the data
is saved in the ring buffer. This acknowledgment happens even if the data is discarded because the ring buffer is
full. If the data must not be acknowledged when it is discarded on a full buffer, set the flags parameter in the
BleGattcOpen() function where the GATT client manager is opened.

Advertising, and GATT Client is open

- Connected, so write to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

write to attribute handle 300 which does not exist

Even when the attribute does not exist an event will occur

EVNOTIFYBUF Event

- Disconnected

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

302

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

In the case when an ACK is NOT sent on data discard, the GATT server is throttled and no further data is notified
or indicated by it until BleGattNotifyRead() is called to extract data from the ring buffer to create space and it
triggers a delayed acknowledgement.

When the GATT client manager is opened using BleGattcOpen(), it is possible to specify the size of the ring
buffer. If a value of 0 is supplied, then a default size is created. SYSINFO(2019) in a smartBASIC application or the
interactive mode command AT I 2019 returns the default size. Likewise SYSINFO(2020) or the command AT I
2020 returns the maximum size.

Data that arrives via notifications or indications get stored in the ring buffer. At the same time, a EVATTRNOTIFY
event is thrown to the smartBASIC runtime engine. This is an event, in the same way an incoming UART receive
character generates an event; that is, no data payload is attached to the event.

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount)

The following is a typical pseudo code for handling and accessing notification/indication data:

Register a handler for the EVATTRNOTIFY event message

On EVATTRNOTIFY event

 BleGattcNotifyRead() //to actually get the data

 Process the data

Enable notifications and/or indications via CCCD descriptors

Returns INTEGER, a result code. The typical value is 0x0000, indicating data was successful read.

Arguments:

connHndl
byRef connHndl AS INTEGER
On exit, this is the connection handle of the GATT server that sent the notification or
indication.

attrHndl
byRef attrHndl AS INTEGER

On exit, this is the handle of the characteristic value attribute in the notification or indication.

attrData$
byRef attrData$ AS STRING
On exit, this is the data of the characteristic value attribute in the notification or indication. It
is always from offset 0 of the source attribute.

discardedCount

byRef discardedCount AS INTEGER
On exit, this should contain 0. It signifies the total number of notifications or indications that
got discared because the ring buffer in the GATT client manager was full.
If non-zero values are encountered, it is recommended that the ring buffer size be increased
by using BleGattcClose() when the GATT client was opened using BleGattcOpen().

Example:

//Example :: BleGATTcNotifyRead.sb (See in BT900CodeSnippets.zip)

//

// Server created using BleGattcTblNotifyRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

//

// Charactersitic at handle 15 has notify (16==cccd)

// Charactersitic at handle 18 has indicate (19==cccd)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

303

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the GATT client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so enable notification for char with cccd at 16"

 atHndl = 16

 at$="\01\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

304

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\n- enable indication for char with cccd at 19"

 atHndl = 19

 at$="\02\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

'//==

'//==

function HandlerAttrNotify() as integer

 dim chndl,aHndl,att$,dscd

 print "\nEVATTRNOTIFY Event"

 rc=BleGattcNotifyRead(cHndl,aHndl,att$,dscd)

 print "\n BleGattcNotifyRead()"

 if rc==0 then

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " data=";StrHexize$(att$)

 print " discarded=";dscd

 else

 print " failed with ";integer.h' rc

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

305

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 endif

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

OnEvent EVATTRNOTIFY call HandlerAttrNotify

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and GATT Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so enable notification for char with cccd at 16

EVATTRWRITE cHndl=877 attrHndl=16 status=00000000

Attribute write OK

- enable indication for char with cccd at 19

EVATTRWRITE cHndl=877 attrHndl=19 status=00000000

Attribute write OK

EVATTRNOTIFY Event

 BleGATTcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0

EVATTRNOTIFY Event

 BleGATTcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

EVATTRNOTIFY Event

 BleGATTcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0

EVATTRNOTIFY Event

 BleGATTcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

306

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Attribute Encoding Functions

Data for characteristics are stored in value attributes, arrays of bytes. Multibyte Characteristic Descriptors
content is stored similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

The Bluetooth specification stipulates that multibyte data entities are stored in little endian format and so all
data manipulation is done similarly. Little endian means that a multibyte data entity is stored so that lowest
significant byte is positioned at the lowest memory address and likewise, when transported, the lowest byte is
on the wire first.

This section describes all the encoding functions which allow those strings to be written in smaller bytewise
subfields in a more efficient manner compared to the generic STRXXXX functions that are made available in
smartBASIC.

Note: CCCD and SCCD descriptors are special cases; they have two bytes which are treated as 16-bit integers.
This is reflected in smartBASIC applications so that INTEGER variables are used to manipulate those
values instead of STRINGS.

BleEncode8

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE8 (attr$,nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The least significant byte of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER
This is the zero-based index into the string attr$ where the new data fragment is written to. If the string
attr$ is not long enough to fit the index plus the length of the fragment, it is extended. If the extended
length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

Example:

 //Example :: BleEncode8.sb (See in BT900CodeSnippets.zip)

 DIM rc

 DIM attr$

 attr$="Laird"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

307

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\nattr$=";attr$

 //Remember: - 4 bytes are used to store an integer on the BT900

 //write 'C' to index 2 -- '111' will be ignored

 rc=BleEncode8(attr$,0x11143,2)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'B' to index 1

 rc=BleEncode8(attr$,0x42,1)

 //write 'D' to index 3

 rc=BleEncode8(attr$,0x44,3)

 //write 'y' to index 7 -- attr$ will be extended

 rc=BleEncode8(attr$,0x67, 7)

 PRINT "\nattr$ now = ";attr$

Expected Output:

BleEncode16

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE16 (attr$,nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING

This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The two least significant bytes of this integer is saved. The rest is ignored.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If
the string attr$ is not long enough to accommodate the index plus the length of the fragment, it

attr$=Laird

attr$ now = ABCDd\00\00g

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

308

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

is extended. If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

 //Example :: BleEncode16.sb (See in BT900CodeSnippets.zip)

 DIM rc, attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //write 'CD' to index 2

 rc=BleEncode16(attr$,0x4443,2)

 //write 'AB' to index 0 - '2222' will be ignored

 rc=BleEncode16(attr$,0x22224241,0)

 //write 'EF' to index 3

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "\nattr$ now = ";attr$

Expected Output:

BleEncode24

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE24 (attr$,nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The three least significant bytes of this integer is saved. The rest is ignored.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If the string
attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If

attr$=Laird

attr$ now = ABCDEF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

309

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

the extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

 //Example :: BleEncode24.sb (See in BT900CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCD' to index 1

 rc=BleEncode24(attr$,0x444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'EF'to index 4

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "attr$=";attr$

Expected Output:

BleEncode32

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is
extended with the new extended block uninitialized and then the bytes specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODE32(attr$,nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The four bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If the
string attr$ is not long enough to accommodate the index plus the length of the fragment, it is
extended. If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

attr$=ABCDEF

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

310

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

 //Example :: BleEncode32.sb (See in BT900CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCDE' to index 1

 rc=BleEncode32(attr$,0x45444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 PRINT "attr$=";attr$

Expected Output:

BleEncodeFLOAT

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is extended
with the new extended block uninitialized and then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nMatissa

byVal nMantissa AS INTEGER
This value must be in the range -8388600 to +8388600 or the function fails. The data is written in little
endian so that the least significant byte is at the lower memory address.
Note: The range is not +/- 2048 because after encoding the following 2 byte values have special

meaning:
0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

0x00800002 - INFINITY

0x00800001 Reserved for future use

nExponent
byVal nExponent AS INTEGER
This value must be in the range -128 to 127 or the function fails.

nIndex byVal nIndex AS INTEGER

attr$=ABCDE

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

311

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

This is the zero based index into the string attr$ where the new fragment of data is written. If the string
attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If
the extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

 //Example :: BleEncodeFloat.sb (See in BT900CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$=""

 //write 1234567 x 10^-54 as FLOAT to index 2

 PRINT BleEncodeFLOAT(attr$,123456,-54,0)

 //write 1234567 x 10^1000 as FLOAT to index 2 and it will fail

 //because the exponent is too large, it has to be < 127

 IF BleEncodeFLOAT(attr$,1234567,1000,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

 //write 10000000 x 10^0 as FLOAT to index 2 and it will fail

 //because the mantissa is too large, it has to be < 8388600

 IF BleEncodeFLOAT(attr$,10000000,0,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

Expected Output:

BleEncodeSFLOATEX

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not
long enough, it is extended with the extended block uninitialized. Then the bytes are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

0

Failed to encode to FLOAT

Failed to encode to FLOAT

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

312

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BLEENCODESFLOATEX(attr$,nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute

nData

byVal nData AS INTEGER
The 32 bit value is converted into a 2-byte IEEE-11073 16-bit SFLOAT consisting of a 12-bit signed
mantissa and a 4-bit signed exponent. This means a signed 32-bit value always fits in such a FLOAT
enitity, but there is a loss in significance to 12 from 32.

nIndex

byVal nIndex AS INTEGER
This is the zero-based index into the string attr$ where the new fragment of data is written. If the string
attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If
the new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

 //Example :: BleEncodeSFloatEx.sb (See in BT900CodeSnippets.zip)

 DIM rc, mantissa, exp

 DIM attr$: attr$=""

 //write 2,147,483,647 as SFLOAT to index 0

 rc=BleEncodeSFloatEX(attr$,2147483647,0)

 rc=BleDecodeSFloat(attr$,mantissa,exp,0)

 PRINT "\nThe number stored is ";mantissa;" x 10^";exp

Expected Output:

BleEncodeSFLOAT

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not
long enough, it is extended with the new block uninitialized. Then the byte specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BLEENCODESFLOAT(attr$, nMatissa, nExponent, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

The number stored is 214 x 10^7

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

313

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nMatissa

byVal nMantissa AS INTEGER
This must be in the range -2046 to +2046 or the function fails. The data is written in little endian so the
least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding, the following 2-byte values have special
meaning:

0x007FF NaN (Not a Number)

0x00800 NRes (Not at this resolution)

0x007FE + INFINITY

0x00802 - INFINITY

0x00801 Reserved for future use

nExponent
byVal nExponent AS INTEGER
This value must be in the range -8 to 7 or the function fails.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If the string
attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If
the new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

 //Example :: BleEncodeSFloat.sb (See in BT900CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$=""

 SUB Encode(BYVAL mantissa, BYVAL exp)

 IF BleEncodeSFloat(attr$,mantissa,exp,2)!=0 THEN

 PRINT "\nFailed to encode to SFLOAT"

 ELSE

 PRINT "\nSuccess"

 ENDIF

 ENDSUB

 Encode(1234,-4) //1234 x 10^-4

 Encode(1234,10) //1234 x 10^10 will fail because exponent too large

 Encode(10000,0) //10000 x 10^0 will fail because mantissa too large

Expected Output:

Success

Failed to encode to SFLOAT

Failed to encode to SFLOAT

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

314

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleEncodeTIMESTAMP

FUNCTION

This function overwrites a 7-byte string into the string at a specified offset. If the string is not long enough, it is
extended with the new extended block uninitialized and then the byte specified is overwritten.

The 7-byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year *
month) is zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example, 5 May 2013 10:31:24 is represented as \14\0D\05\05\0A\1F\18.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512.

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16-bit integer.
Hence \14\0D gets converted to \DD\07

BLEENCODETIMESTAMP (attr$, timestamp$, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string that is written to an attribute.

timestamp$
byRef timestamp$ AS STRING
This is a 7-byte string as described above. For example 5 May 2013 10:31:24 is entered
\14\0D\05\05\0A\1F\18.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written. If the string
attr$ is not long enough to accommodate the index plus the length of the fragment it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function
fails.

Example:

 //Example :: BleEncodeTimestamp.sb (See in BT900CodeSnippets.zip)

 DIM rc, ts$

 DIM attr$: attr$=""

 //write the timestamp <5 May 2013 10:31:24>

 ts$="\14\0D\05\05\0A\1F\18"

 PRINT BleEncodeTimestamp(attr$,ts$,0)

Expected Output:

0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

315

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleEncodeSTRING

FUNCTION

This function overwrites a substring at a specified offset with data from another substring of a string. If the
destination string is not long enough, it is extended with the new block uninitialized. Then the byte is
overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512.

BleEncodeSTRING (attr$,nIndex1 str$, nIndex2,nLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This argument is the string is written to an attribute

nIndex1

byVal nIndex1 AS INTEGER
This is the zero based index into the string attr$ where the new fragment of data is written If the string
attr$ is not long enough to accommodate the index plus the length of the fragment it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function
fails.

str$
byRef str$ AS STRING
This contains the source data which is qualified by the nIndex2 and nLen arguments that follow.

nIndex2
byVal nIndex2 AS INTEGER
This is the zero based index into the string str$ from which data is copied. No data is copied if this is
negative or greater than the string.

nLen
byVal nLen AS INTEGER
This species the number of bytes from offset nIndex2 to be copied into the destination string. It is
clipped to the number of bytes left to copy after the index.

Example:

 //Example :: BleEncodeString.sb (See in BT900CodeSnippets.zip)

 DIM rc, attr$, ts$: ts$="Hello World"

 //write "Wor" from "Hello World" to the attribute at index 2

 rc=BleEncodeString(attr$,2,ts$,6,3)

 PRINT attr$

Expected Output:

BleEncodeBITS

FUNCTION

This function overwrites some bits of a string at a specified bit offset with data from an integer which is treated
as a bit array of length 32. If the destination string is not long enough, it is extended with the new extended
block uninitialized. Then the bits specified are overwritten.

\00\00Wor

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

316

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The
maximum length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is
2013. The Bluetooth specification allows a length between 1 and 512; hence the (nDstIdx + nBitLen) cannot be
greater than the maximum attribute length times eight.

BleEncodeBITS (attr$,nDstIdx, srcBitArr , nSrcIdx, nBitLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

attr$
byRef attr$ AS STRING
This is the string written to an attribute. It is treated as a bit array.

nDstIdx

byVal nDstIdx AS INTEGER
This is the zero based bit index into the string attr$, treated as a bit array, where the new fragment of
data bits is written. If the string attr$ is not long enough to accommodate the index plus the length of
the fragment it is extended. If the new length exceeds the maximum allowable length of an attribute
(see SYSINFO(2013)), this function fails.

srcBitArr
byVal srcBitArr AS INTEGER
This contains the source data bits which is qualified by the nSrcIdx and nBitLen arguments that follow.

nSrcIdx
byVal nSrcIdx AS INTEGER
This is the zero-based bit index into the bit array contained in srcBitArr from where the data bits is
copied. No data is copied if this index is negative or greater than 32.

nBitLen
byVal nBitLen AS INTEGER
This species the number of bits from offset nSrcIdx to be copied into the destination bit array
represented by the string attr$. It is clipped to the number of bits left to copy after the index nSrcIdx.

Example:

 //Example :: BleEncodeBits.sb (See in BT900CodeSnippets.zip)

 DIM attr$, rc, bA: bA=b'1110100001111

 rc=BleEncodeBits(attr$,20,bA,7,5) : PRINT attr$ //copy 5 bits from index 7 to attr$

Expected Output:

Attribute Decoding Functions

Data in a characteristic is stored in a value attribute, a byte array. Multibyte characteristic descriptors content is
stored similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

Attibute data is stored in little endian format.

This section describes decoding functions that allow attribute strings to be read from smaller bytewise subfields
more efficiently than the generic STRXXXX functions that are made available in smartBASIC.

Note: CCCD and SCCD descriptors are special cases as they are defined as having two bytes which are
treated as 16-bit integers mapped to INTEGER variables in smartBASIC.

\00\00\A0\01

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

317

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleDecodeS8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32-bit integer variable with sign extension.
If the offset points beyond the end of the string, then this function fails and returns zero.

BLEDECODES8 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 8-bit data from attr$, after sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which the data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

 //Example :: BleDecodeS8.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 //create random service just for this example

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 //create char and commit as part of service commited above

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read signed byte from index 2

 rc=BleDecodeS8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

318

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //read signed byte from index 6 - two's complement of -122

 rc=BleDecodeS8(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BleDecodeU8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32-bit integer variable without sign
extension. If the offset points beyond the end of the string, this function fails.

BLEDECODEU8 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 8-bit data from attr$, without sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

 //Example :: BleDecodeU8.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

data in Hex = 0x00000002

data in Decimal = 2

data in Hex = 0xFFFFFF86

data in Decimal = -122

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

319

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read unsigned byte from index 2

 rc=BleDecodeU8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read unsigned byte from index 6

 rc=BleDecodeU8(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BleDecodeS16

FUNCTION

This function reads two bytes in a string at a specified offset into a 32-bit integer variable with sign extension. If
the offset points beyond the end of the string then this function fails.

BLEDECODES16 (attr$,nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 2-byte data from attr$, after sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

data in Hex = 0x00000002

data in Decimal = 2

data in Hex = 0x00000086

data in Decimal = 134

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

320

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

 //Example :: BleDecodeS16.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 signed bytes from index 2

 rc=BleDecodeS16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 2 signed bytes from index 6

 rc=BleDecodeS16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00000302

data in Decimal = 770

data in Hex = 0xFFFF8786

data in Decimal = -30842

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

321

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleDecodeU16

This function reads two bytes from a string at a specified offset into a 32-bit integer variable without sign
extension. If the offset points beyond the end of the string, then this function fails.

BLEDECODEU16 (attr$,nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 2-byte data from attr$, without sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

 //Example :: BleDecodeU16.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 unsigned bytes from index 2

 rc=BleDecodeU16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 2 unsigned bytes from index 6

 rc=BleDecodeU16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

322

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BleDecodeS24

FUNCTION

This function reads three bytes in a string at a specified offset into a 32-bit integer variable with sign extension.
If the offset points beyond the end of the string, this function fails.

BLEDECODES24 (attr$,nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from attr$, with sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

 //Example :: BleDecodeS24.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

data in Hex = 0x00000302

data in Decimal = 770

data in Hex = 0x00008786

data in Decimal = 34694

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

323

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 signed bytes from index 2

 rc=BleDecodeS24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 signed bytes from index 6

 rc=BleDecodeS24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BleDecodeU24

FUNCTION

This function reads three bytes from a string at a specified offset into a 32-bit integer variable without sign
extension. If the offset points beyond the end of the string, then this function fails.

BLEDECODEU24 (attr$,nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from attr$, without sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

data in Hex = 0x00040302

data in Decimal = 262914

data in Hex = 0xFF888786

data in Decimal = -7829626

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

324

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Example:

 //Example :: BleDecodeU24.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 unsigned bytes from index 2

 rc=BleDecodeU24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 unsigned bytes from index 6

 rc=BleDecodeU24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

data in Hex = 0x00040302

data in Decimal = 262914

data in Hex = 0x00888786

data in Decimal = 8947590

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

325

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleDecode32

FUNCTION

This function reads four bytes in a string at a specified offset into a 32-bit integer variable. If the offset points
beyond the end of the string, this function fails.

BLEDECODE32 (attr$,nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from attr$, after sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

 //Example :: BleDecode32.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 signed bytes from index 2

 rc=BleDecode32(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 4 signed bytes from index 6

 rc=BleDecode32(attr$,v1,6)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

326

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BleDecodeFLOAT

FUNCTION

This function reads four bytes in a string at a specified offset into a couple of 32-bit integer variables. The
decoding results in two variables, the 24-bit signed mantissa and the 8-bit signed exponent. If the offset points
beyond the end of the string, this function fails.

BLEDECODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nMantissa

byRef nMantissa AS INTEGER
This is updated with the 24 bit mantissa from the 4-byte object.

If nExponent is 0, you must check for the following special values:

0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

0x00800002 - INFINITY

0x00800001 Reserved for future use

nExponent
byRef nExponent AS INTEGER
This is updated with the 8-bit mantissa. If it is zero, check nMantissa for special cases as stated above.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

 //Example :: BleDecodeFloat.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

data in Hex = 0x85040302

data in Decimal = -2063334654

data in Hex = 0x89888786

data in Decimal = -1987541114

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

327

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 bytes FLOAT from index 2 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 4 bytes FLOAT from index 6 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

BleDecodeSFLOAT

FUNCTION

This function reads two bytes in a string at a specified offset into a couple of 32-bit integer variables. The
decoding results in two variables, the 12-bit signed maintissa and the 4-bit signed exponent. If the offset points
beyond the end of the string then this function fails.

BLEDECODESFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nMantissa

byRef nMantissa AS INTEGER
This is updated with the 12-bit mantissa from the two byte object.
If the nExponent is 0, you must check for the following special values:

0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

The number read is 262914*10^-123

The number read is -7829626*10^-119

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

328

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

0x00800002 - INFINITY

0x00800001 Reserved for future use

nExponent
byRef nExponent AS INTEGER
This is updated with the 4-bit mantissa. If it is zero, check the nMantissa for special cases as stated
above.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

 //Example :: BleDecodeSFloat.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 bytes FLOAT from index 2 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 2 bytes FLOAT from index 6 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

The number read is 770 x 10^0

The number read is 1926x 10^-8

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

329

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleDecodeTIMESTAMP

FUNCTION

This function reads seven bytes from string an offset into an attribute string. If the offset plus seven bytes points
beyond the end of the string then this function fails.

The seven byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year *
month) is zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example: 5 May 2013 10:31:24 is represented in the source as \DD\07\05\05\0A\1F\18 and the year is be
translated into a century and year so that the destination string is \14\0D\05\05\0A\1F\18.

BLEDECODETIMESTAMP (attr$, timestamp$, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected
if the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

timestamp$
byRef timestamp$ AS STRING
On exit this is an exact 7-byte string as described above.
For example: 5 May 2013 10:31:24 is stored as \14\0D\05\05\0A\1F\18

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

Example:

 //Example :: BleDecodeTimestamp.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //5th May 2013, 10:31:24

 DIM attr$: attr$="\00\01\02\DD\07\05\05\0A\1F\18"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 7 byte timestamp from the index 3 in the string

 rc=BleDecodeTimestamp(attr$,ts$,3)

 PRINT "\nTimestamp = "; StrHexize$(ts$)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

330

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BleDecodeSTRING

FUNCTION

This function reads a maximum number of bytes from an attribute string at a specified offset into a destination
string. Because the output string can handle truncated bit blocks, this function does not fail.

BLEDECODESTRING (attr$, nIndex, dst$, nMaxBytes)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which the function reads.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into string attr$ from which data is read.

dst$
byRef dst$ AS STRING
This argument is a reference to a string that is updated with up to nMaxBytes of data from the index
specified. A shorter string is returned if there are not enough bytes beyond the index.

nMaxBytes
byVal nMaxBytes AS INTEGER
This specifies the maximum number of bytes to read from attr$.

 Example:

 //Example :: BleDecodeString.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

Timestamp = 140D05050A1F18

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

331

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 //read max 4 bytes from index 3 in the string

 rc=BleDecodeSTRING(attr$,3,decStr$,4)

 PRINT "\nd$=";decStr$

 //read max 20 bytes from index 3 in the string - will be truncated

 rc=BleDecodeSTRING(attr$,3,decStr$,20)

 PRINT "\nd$=";decStr$

 //read max 4 bytes from index 14 in the string - nothing at index 14

 rc=BleDecodeSTRING(attr$,14,decStr$,4)

 PRINT "\nd$=";decStr$

Expected Output:

BleDecodeBITS

FUNCTION

This function reads bits from an attribute string at a specified offset (treated as a bit array) into a destination
integer object (treated as a bit array of fixed size of 32). This implies a maximum of 32 bits can be read. Because
the output bit array can handle truncated bit blocks, this function does not fail.

BLEDECODEBITS (attr$, nSrcIdx, dstBitArr, nDstIdx,nMaxBits)

Returns INTEGER, the number of bits extracted from the attribute string. Can be less than the size expected if the
nSrcIdx parameter is positioned towards the end of the source string or if nDstIdx will not allow more to
be copied.

Arguments:

attr$
byRef attr$ AS STRING
This references the attribute string from which to read, treated as a bit array. Hence a string of 10 bytes
is an array of 80 bits.

nSrcIdx
byVal nSrcIdx AS INTEGER
This is the zero based bit index into the string attr$ from which data is read. For example, the third bit in
the second byte is index number 10.

dstBitArr
byRef dstBitArr AS INTEGER
This argument references an integer treated as an array of 32 bits into which data is copied. Only the
written bits are modified.

nDstldx
byVal nDstIdx AS INTEGER
This is the zero based bit index into the bit array dstBitArr to where the data is written.

d$=CDEF

d$=CDEFGHIJ

d$=

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

332

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nMaxBits
byVal nMaxBits AS INTEGER
This argument specifies the maximum number of bits to read from attr$. Due to the destination being an
integer variable, it cannot be greater than 32. Negative values are treated as zero.

Example:

 //Example :: BleDecodeBits.sb (See in BT900CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM ba : ba=0

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleServiceCommit(svcHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 14 bits from index 20 in the string to index 10

 rc=BleDecodeBITS(attr$,20,ba,10,14)

 PRINT "\nbit array = ", INTEGER.B' ba

 //read max 14 bits from index 20 in the string to index 10

 ba=0x12345678

 PRINT "\n\nbit array = ",INTEGER.B' ba

 rc=BleDecodeBITS(attr$,14000,ba,0,14)

 PRINT "\nbit array now = ", INTEGER.B' ba

 //ba will not have been modified because index 14000

 //doesn't exist in attr$

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

333

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

Pairing, Bonding, and Security Manager Functions

Pairing and Bonding Functions

This section describes all functions related to the pairing and bonding manager which manages trusted devices.
The database stores information such as the address of the trusted device along with the security keys. At the
time of writing this guide, a maximum of four devices can be stored in the database.

The command AT I 2012 or at runtime SYSINFO(2012) returns the maximum number of devices that can be
saved in the database.

The type of information that can be stored for a trusted device is:

 The Bluetooth address of the trusted device.
 The eDIV and eRAND for the long term key.
 A 16-byte Long Term Key (LTK).
 The size of the LTK.
 A flag to indictate if the LTK is authenticated – Man-In-The-Middle (MITM) protection.
 A 16-byte Indentity Resolving Key (IRK).
 A 16-byte Connection Signature Resolving Key (CSRK)

BleBondingStats

FUNCTION

This function is used to get the BLE bonding manager database statistics.

BLEBONDINGSTATS (nRolling, nPersistent)

Returns The total capacity of the database

Arguments:

nRolling
byREF nRolling AS INTEGER
On return, this integer contains the total number of bonds in the rolling database.

nPersistent
byREF nPersistent AS INTEGER
On return, this integer contains the total number of bonds in the persistent database.

Example:

dim rc, nRoll, nPers

print "\n:Bonding Manager Database Statistics:"

print "\nCapacity: ","", BleBondingStats(nRoll, nPers)

print "\nRolling: ","",nRoll

print "\nPersistent: ",nPers

bit array = 00000000000100001101000000000000

bit array = 00010010001101000101011001111000

bit array now = 00010010001101000101011001111000

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

334

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

BLEBONDINGSTATS is a built-in function.

BleBondingPersistKey

FUNCTION

This function is used to make a bonding link key persistent. Its entry is moved from the rolling database to the
persistent database so that it is never automatically overwritten.

BLEBONDINGPERSISTKEY (bdAddr$)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

bdAddr$
byREF bdAddr$ AS STRING
Bluetooth address in big endian. Must be exactly seven bytes long.

Example:

dim rc, i, j, k, adr$, inf

'//Loop through the bonding manager. Make all entries persistent

for i=0 to BleBondingStats(j,k)

 rc=BleBondMngrGetInfo(i,adr$,inf)

 if rc==0 then

 rc=BleBondingPersistKey(adr$)

 print "\n(";i;") : ";StrHexize$(adr$);" Now Persistent"

 endif

next

Expected Output:

BLEBONDINGPERSISTKEY is a built-in function.

:Bonding Manager Database Statistics:

Capacity: 16

Rolling: 2

Persistent: 0

(0) : 01F63627A60BEA Now Persistent

(1) : 01D8CFCF14498D Now Persistent

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

335

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleBondingIsTrusted

FUNCTION

This function is used to check if a device identified by the address is a trusted device which means it exists in the
bonding database.

BLEBONDINGISTRUSTED (addr$, fAsCentral, keyInfo, rollingAge, rollingCount)

Returns INTEGER: Is 0 if not trusted, otherwise it is the length of the long term key (LTK)

Arguments

addr$
byRef addr$ AS STRING
This is the address of the device for which the bonding information is to be checked.

fAsCentral Set to 0 if the device is to be trusted as a peripheral and non-zero if to be trusted as central.

keyInfo

This is a bit mask with bit meanings as follows:
This specifies the write rights and shall have one of the following values:

Bit 0 Set if MITM is authenticated

Bit 1 Set if it is a rolling bond and can be automatically deleted if the database is full and a new
bonding occurs

Bit 2 Set if an IRK (identity resolving key) exists

Bit 3 Set if a CSRK (connection signing resolving key) exists

Bit 4 Set if LTK as slave exists

Bit 5 Set if LTK as master exists

rollingAge
If the value is <= 0, this is not a rolling device.
1 implies it is the newest bond, 2 implies it is the second newest bond, and so on.

rollingCount
On exit this will contain the total number of rolling bonds. This provides some context with regards
to how old this device is compared to other bonds in the rolling group.

Example:

 //Example

 DIM rc, addr$

 addr$=”\00\00\16\A4\12\34\56”

 rc = BleBondingPersistKey(addr$)

BleBondingEraseKey

FUNCTION

This function is used to erase a link key from the database for the address specified.

BLEBONDINGERASEKEY (bdAddr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

bdAddr$ byREF bdAddr$ AS STRING
Bluetooth address in big endian. Must be exactly seven bytes long.

Example:

dim rc, i, adr$, inf

//delete link key at index 0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

336

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

rc=BleBondMngrGetInfo(0,adr$,inf) //get the BT address

rc=BleBondingEraseKey(adr$)

if rc==0 then

 print "\nLink key for device ";StrHexize$(adr$);" erased"

else

 print "\nError erasing link key ";integer.h'rc

endif

Expected Output:

BLEBONDINGERASEKEY is a built-in function.

BleBondingEraseAll

FUNCTION

This function is used to erase all bondings in the database.

BLEBONDINGERASEALL ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Example:

dim rc

//erase all bondings in database

rc=BleBondingEraseAll()

if rc==0 then

 print "\nBonding database cleared"

endif

Expected Output:

Bonding database cleared

BLEBONDINGERASEALL is a built-in function.

Link key for device 01FA84D748D903 erased

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

337

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleBondMngrGetInfo

FUNCTION

This function retrieves the Bluetooth address and other information from the trusted device database via an
index.

Note: Do not rely on a device in the database mapping to a static index. New bondings change the position
in the database.

BLEBONDMNGRGETINFO (nIndex, addr$, nExtraInfo)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nIndex byVal nIndex AS INTEGER
This is an index in the range 0 to 1, less than the value returned by SYSINFO(2012).

addr$ byRef addr$ AS STRING
On exit, if nIndex points to a valid entry in the database, this variable contains a Bluetooth address
exactly seven bytes long. The first byte identifies public or private random address. The next six bytes
are the address.

nExtraInfo byRef nExtraInfo AS INTEGER
On exit, if nIndex points to a valid entry in the database, this variable contains a composite integer value
where the lower 16 bits are for internal use and should be treated as opaque data. Bit 17 is set if the IRK
(Identity Resolving Key) exists for the trusted device and bit 18 is set if the CSRK (Connection Signing
Resolving Key) exists for the trusted device.

Example:

 //Example :: BleBondMngrGetInfo.sb (See in BT900CodeSnippets.zip)

 #define BLE_INV_INDEX 24619

 DIM rc, addr$, exInfo

 rc = BleBondMngrGetInfo(0,addr$,exInfo) //Extract info of device at index 1

 IF rc==0 THEN

 PRINT "\nBluetooth address: ";addr$

 PRINT "\nInfo: ";exInfo

 ELSEIF rc==BLE_INV_INDEX THEN

 PRINT "\nInvalid index"

 ENDIF

Expected Output when valid entry present in database:

Expected Output with invalid index:

Bluetooth address: \00\BC\B1\F3x3\AB

Info: 97457

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

338

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Security Manager Functions

This section describes routines which manage all aspects of BLE security such as IO capabilities, Passkey
exchange, OOB data, and bonding requirements.

Events and Messages

The following security manager messages are thrown to the run-time engine using the EVBLEMSG message with
the following msgIDs:

MsgId Description

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created

11 Pairing in progress and authentication key requested. Type of key is in msgCtx.
msgCtx is 1 for passkey_type which is a number in the range 0 to 999999 and 2 for OOB key which is a 16 byte
key.

25 OOB Data availability request, reply with BleSecMngrOobAvailable()

To submit a passkey, use the function BLESECMNGRPASSKEY.

BleSecMngrJustWorksConf

FUNCTION

This function is used to set the default action for when a pairing is in process and the I/O Capability is set to “Just
Works.”

BLESECMNGRJUSTWORKSCONF(nJustWorksConf)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nJustWorksConf

byVal nJustWorksConf AS INTEGER.
If set to 0, pairing just works without confirmation. If set to 1, when pairing is in progress, you get
an EVBLEMSG event with ID 11 and key type 0. In this case you accept or decline the pairing
request with BleAcceptPairing().

See example for BlePair().

BleSecMngrOobPref

FUNCTION

This function is used to set a flag to indicate to the peer during a pairing that OOB pairing is preferred.

BLESECMNGROOBPREF(nOobPreferred)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

Invalid index

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

339

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nJustWorksConf
byVal nJustWorksConf AS INTEGER.
If set to 0, there will be no OOB data available. If set to 1, OOB data is available. If set to 2, prompt
for OOB data availability.

Example:

//Example :: BleSecMngrOobPref.sb (See in BT900CodeSnippets.zip)

dim rc

rc = BleSecMngrOobPref(1)

IF (rc == 0) THEN

 PRINT "OOB Pairing preference has been set."

ENDIF

Expected Output:

BleSecMngrOobAvailable

FUNCTION

This function is used indicate that OOB data is available for the requested connection.

BLESECMNGROOBAVAILABLE(connHandle, nOobAvail)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

connHandle
byVal connHandle AS INTEGER.
The connection handle as received via the EVBLEMSG event with msgId set to 0.

nOobAvail
byVal nOobAvail AS INTEGER.
If set to 0, we do not have OOB data available. If set to 1, OOB data is available.

BleAcceptPairing

FUNCTION

This function is used to accept or decline a “Just Works” pairing request from the peer device at the other end of
the connection with the specified handle. This function should, in most cases, be called in a EVBLEMSG handler
when the nMsgID is 11 – Authentication Key Requested and the Key Type is 0.

Note: As part of the Bluetooth specification, a master may not use this function until the slave device has
used it. Otherwise an error (invalid state) is returned.

BLEACCEPTPAIRING(nConnHandle, nAccept)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nConnHandle
byVal nConnHandle AS INTEGER.
The handle of the connection for which you are accepting or rejecting a pairing request.

OOB Pairing preference has been set.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

340

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nAccept
byVal nAccept AS INTEGER.

Set to 0 to reject the pairing request, set to 1 to accept the pairing request.

See example for BlePair().

BleSecMngrPasskey

FUNCTION

This function submits a passkey to the underlying stack during a pairing procedure when prompted by the
EVBLEMSG with msgId set to 11. See Events and Messages.

BLESECMNGRPASSKEY(connHandle, nPassKey)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

connHandle
byVal connHandle AS INTEGER.
The connection handle as received via the EVBLEMSG event with msgId set to 0.

nPassKey
byVal nPassKey AS INTEGER.

The passkey to submit to the stack. Submit a value outside the range 0 to 999999 to reject the pairing.

Example:

//Example :: BleSecMngrPasskey.sb (See in BT900CodeSnippets.zip)

DIM rc, connHandle

DIM addr$: addr$=""

DIM i, pin$

'// Called when data arrives through the UART - PIN

FUNCTION HandlerUartRxPIN()

 i = UartReadMatch(pin$,13)

 if i !=0 then

 pin$ = StrSplitLeft$(pin$,i-1)

 if strcmp(pin$,"quit")==0 || strcmp(pin$,"exit")==0 then

 rc=BleDisconnect(connHandle)

 exitfunc 0

 elseif BleSecMngrPassKey(connHandle,StrValDec(pin$))==0 then

 print "\nPasskey: ";pin$

 OnEvent EVUARTRX disable

 endif

 pin$=""

 endif

ENDFUNC 1

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

341

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE 0

 connHandle = nCtx

 PRINT "\n--- Ble Connection, ",nCtx

 CASE 1

 PRINT "\n--- Disconnected ";nCtx;"\n"

 EXITFUNC 0

 CASE 10

 PRINT "\n--- New bond"

 CASE 11

 PRINT "\n +++ Auth Key Request, type=";nCtx

 PRINT "\nEnter the pass key and Press Enter:\n"

 onevent evuartrx call HandlerUartRxPIN

 CASE 17

 print "\nNew pairing/bond has replaced old key"

 CASE ELSE

 ENDSELECT

ENDFUNC 1

ONEVENT EVBLEMSG CALL HandlerBleMsg

rc=BleSecMngrIoCap(2) //Set i/o capability - Keyboard Only (authenticated pairing)

IF BleAdvertStart(0,addr$,25,0,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nPair with the module"

ELSE

 PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

342

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleSecMngrOOBkey

FUNCTION

This function submits an OOB (Out Of Band) key to the underlying stack during a pairing procedure when
prompted by the EVBLEMSG with msgId set to 11 and the key type nCtx is 2, OOB. See Events & Messages.

BLESECMNGRPASSKEY(connHandle, nPassKey)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

connHandle
byVal connHandle AS INTEGER.
This is the connection handle as received via the EVBLEMSG event with msgId set to 0.

oobKey$

byRef oobKey$ AS STRING.

This is the OOB key to submit to the stack. Submit a 16 byte string, or a string of a different
length to reject the request.

Example:

DIM rc, connHandle

DIM addr$: addr$=""

DIM oob$: oob$ = "\11\22\33\44\55\66\77\88\99\00\aa\cc\bb\dd\ee\ff"

#define OOB_KEY 2

FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE 0

 connHandle = nCtx

 PRINT "\nBle Connection ",nCtx

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 EXITFUNC 0

 CASE 10

 PRINT "\n--- New bond"

Adverts Started

Pair with the module

--- Ble Connection, 2782

 +++ Auth Key Request, type=1

Enter the pass key and Press Enter:

904096

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

343

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 CASE 11

 PRINT "\n +++ Auth Key Request, type=",nCtx

 if nCtx == OOB_KEY then

 rc=BleSecMngrOobKey(connHandle,oob$)

 print "\nOOB Key ";StrHexize$(oob$);" was used"

 endif

 CASE ELSE

 PRINT "\nUnknown Ble Msg"

 ENDSELECT

ENDFUNC 1

ONEVENT EVBLEMSG CALL HandlerBleMsg

IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BT900"

ELSE

 PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

Make a connection to the BT900

Ble Connection, 1655

 +++ Auth Key Request, type=2

OOB Key 11223344556677889911AACCBBDDEEFF was used

--- New bond

Disconnected 1655

Passkey: 904096

--- New bond

--- Disconnected 2782

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

344

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BleSecMngrKeySizes

FUNCTION

This function sets minimum and maximum long term encryption key size requirements for subsequent pairings.

If this function is not called, default values are 7 and 16 respectively. To ship your end product to a country with
an export restriction, reduce nMaxKeySize to an appropriate value and ensure it is not modifiable.

BLESECMNGRKEYSIZES(nMinKeysize, nMaxKeysize)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nMinKeysiz
byVal nMinKeysiz AS INTEGER.
The minimum key size. The range of this value is from 7 to 16.

nMaxKeysize
byVal nMaxKeysize AS INTEGER.

The maximum key size. The range of this value is from nMinKeysize to 16.

Example:

 //Example :: BleSecMngrKeySizes.sb (See in BT900CodeSnippets.zip)

 PRINT BleSecMngrKeySizes(8,15)

Expected Output:

BleSecMngrIoCap

FUNCTION

This function sets the user I/O capability for subsequent pairings and is used to determine if the pairing is
authenticated. This is related to Simple Secure Pairing as described in the following whitepapers:

https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

In addition, the Security Manager Specification in the core 4.0 specification Part H provides a full description.
You must be registered with the Bluetooth SIG (www.Bluetooth.org) to get access to all these documents.

An authenticated pairing is deemed to be one with less than 1 in a million probability that the pairing was
compromised by a MITM (Man-in-the-middle) security attack.

The valid user I/O capabilities are as described below.

BLESECMNGRIOCAP (nIoCap)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nIoCap

byVal nIoCap AS INTEGER.
The user I/O capability for all subsequent pairings.

0 None; also known as Just Works (unauthenticated pairing)

1 Display with Yes/No input capability (authenticated pairing)

2 Keyboard Only (authenticated pairing)

0

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173
http://www.bluetooth.org/

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

345

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

3 Display Only (authenticated pairing – if other end has input cap)

4 Keyboard and Display (authenticated pairing)

Example:

 //Example :: BleSecMngrIoCap.sb (See in BT900CodeSnippets.zip)

 PRINT BleSecMngrIoCap(1)

Expected Output:

See also examples for BleSecMngrPasskey() and BlePair().

BleSecMngrBondReq

FUNCTION

This function is used to enable or disable bonding when pairing. If enabled, and if your application requires
pairing, a peer device only needs to pair with this module once. If disabled, the device needs to pair every time it
connects to the module.

BLESECMNGRBONDREQ (nBondReq)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nBondReq
byVal nBondReq AS INTEGER.
0 – Disable
1 – Enable

Example:

 //Example :: BleSecMngrBondReq.sb (See in BT900CodeSnippets.zip)

 IF BleSecMngrBondReq(0)==0 THEN

 PRINT "\nBonding disabled"

 ENDIF

Expected Output:

BlePair

FUNCTION

This routine is used to induce the module to pair with the peer and to specify whether to bond with the peer by
storing pairing information in the bonding manager. This function is likely to be used if a write attempt to an
attribute fails with a status code such as 0x105. See EvAttrWrite and EvAttrRead.

0

Bonding disabled

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

346

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BLEPAIR (hConn, nSave)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

hConn
byRef hConn AS INTEGER.
This is the connection handle provided in the EVBLEMSG(0) message which informs the stack
that a connection had been established.

nSave

byVal nSave AS INTEGER
This flag sets whether or not to bond.

Value Description

0 Do not store pairing information (don’t bond)

1 Store pairing information (bond)

Example:

dim rc, pr$, hC, hDesc

dim s$: s$ = "\02\00" //value to write to cccd to enable indications

//This example app was tested with a BL600 running the health thermometer sensor sample app

which requires bonding.

//It connects, tries to read from the temperature characteristic and then initiates a bonding

procedure when it fails.

#define GATT_SERVER_ADDRESS "\01\F6\36\27\A6\0B\EA"

#define AUTHENTICATION_REQUIRED 0x0105

#define SERVICE_UUID 0x1809

#define CHAR_UUID 0x2a1c

#define DESC_UUID 0x2902

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 endif

EndSub

'//--

'// This handler is called when there is a significant BLE event

'//--

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

347

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

function HndlrBleMsg(byval nMsgId as integer, byval nCtx as integer)

 select nMsgId

 case 0

 hC = nCtx

 print "\nConnected, Finding Temp Measurement Char"

 rc=BleGattcFindDesc(nCtx, BleHandleUuid16(SERVICE_UUID), 0, BleHandleUuid16(CHAR_UUID),

0, BleHandleUuid16(DESC_UUID), 0)

 AssertRC(rc,35)

 case 1

 print "\n\n --- Disconnected"

 case 10

 print "\nNew bond created"

 print "\n\nAttempting to enable indications again"

 rc=BleGattcWrite(hC, hDesc, s$)

 AssertRC(rc,58)

 case 11

 print "\nPair request: Accepting"

 rc=BleAcceptPairing(hC,1)

 AssertRC(rc,52)

 print "\nPairing in progress"

 case 17

 print "\nNew pairing/bond has replaced old key"

 case 18

 print "\nConnection now encrypted"

 case else

 endselect

endfunc 1

'//--

'// Called after BleGattcFindDesc returns success

'//--

function HndlrFindDesc(hConn, hD)

 if hD==0 then

 print "\nCCCD not found"

 exitfunc 0

 endif

 hDesc = hD

 print "\nTemp Measurement Char CCCD Found. Attempting to enable indications"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

348

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 rc=BleGattcWrite(hConn, hDesc, s$)

 AssertRC(rc,58)

endfunc 1

'//--

'// Called after BleGattcRead returns success

'//--

function HndlrAttrWriteExit(hConn, hAttr, nSts)

endfunc 0

'//--

'// Called after BleGattcRead returns success

'//--

function HndlrAttrWrite(hConn, hAttr, nSts)

 if nSts == 0 then

 print "\nIndications enabled"

 print "\nDisabling indications"

 s$ = "\00\00"

 rc=BleGattcWrite(hC, hDesc, s$)

 onevent evattrwrite call HndlrAttrWriteExit

 exitfunc 1

 elseif nSts == AUTHENTICATION_REQUIRED then

 print "\n\nAuthentication required."

 '//bond with the peer

 rc=BlePair(hConn, 1)

 AssertRC(rc,75)

 print " Bonding..."

 endif

endfunc 1

//**

// Equivalent to main() in C

//**

rc=BleSecMngrIoCap(0) //set io capability to just works

rc=BleSecMngrJustWorksConf(1) //module will wait for confirmation (EVBLEMSG 11) before just

works pairing

rc=BleGattcOpen(0,0)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

349

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

pr$ = GATT_SERVER_ADDRESS

rc=BleConnect(pr$, 10000, 25, 100, 30000000)

AssertRC(rc,91)

//--

// Enable synchronous event handlers

//--

onevent evblemsg call HndlrBleMsg

onevent evfinddesc call HndlrFindDesc

onevent evattrwrite call HndlrAttrWrite

waitevent

print "\nExiting..."

Expected Output:

BleEncryptConnection

FUNCTION

This function is used to encrypt a BLE connection with a device that the module has previously bonded with (the
device is present in the bonding manager).

BLEENCRYPTCONNECTION(nConnHandle, nLtkMinSize, nMitmRequired)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

Connected, Finding Temp Measurement Char

Temp Measurement Char CCCD Found. Attempting to enable indications

Authentication required. Bonding...

Pair request: Accepting

Pairing in progress

Connection now encrypted

New bond created

Attempting to enable indications again

Indications enabled

Disabling indications

Exiting...

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

350

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nConnHandle
byVal nConnHandle AS INTEGER.
The handle of the connection which is obtained from an EVBLEMSG message with ID 0
indicating that a connection had been established.

nLtkMinSize
byVal nLtkMinSize AS INTEGER.

The minimum long term key size which must be in the range 7-16.

nMitmRequired
byVal nMitmRequired AS INTEGER.

Set to 1 if MITM protection is required, 0 if not required.

Example:

dim rc, pr$, hC, hDesc

#define GATT_SERVER_ADDRESS "\01\F6\36\27\A6\0B\EA"

//This example app was tested with a BL600 running the health thermometer sensor sample app

//which the module had previously bonded with.

'//--

'// For debugging

'// --- rc = result code

'// --- ln = line number

'//--

Sub AssertRC(rc,ln)

 if rc!=0 then

 print "\nFail :";integer.h' rc;" at tag ";ln

 endif

EndSub

'//--

'// This handler is called when there is a significant BLE event

'//--

function HndlrBleMsg(byval nMsgId as integer, byval nCtx as integer)

 select nMsgId

 case 0

 hC = nCtx

 print "\nConnected"

 rc=BleEncryptConnection(hC, 16, 0)

 if rc==0 then

 print "\nEncrypting connection"

 else

 AssertRC(rc,28)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

351

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

 endif

 case 1

 print "\n\n --- Disconnected"

 exitfunc 0

 case 10

 print "\nNew bond created"

 case 11

 print "\nPair request: Accepting"

 rc=BleAcceptPairing(hC,1)

 AssertRC(rc,52)

 print "\nPairing in progress"

 case 17

 print "\nNew pairing/bond has replaced old key"

 case 18

 print "\nConnection now encrypted"

 rc=BleDisconnect(hC)

 case else

 endselect

endfunc 1

rc=BleSecMngrIoCap(0) //set io capability to just works

rc=BleSecMngrJustWorksConf(0) //module will not wait for confirmation (EVBLEMSG 11) before

just works pairing

pr$ = GATT_SERVER_ADDRESS

rc=BleConnect(pr$, 10000, 25, 100, 30000000)

AssertRC(rc,91)

onevent evblemsg call HndlrBleMsg

waitevent

print "\nExiting..."

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

352

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

HID REPORT PARSING

The BT900 module contains a number of smart basic functions that assist in the creation and parsing of HID
reports.

Reports can be created to a specified size to which variables can then be assigned, specifying lengths and offsets
to build up the report. The report can then be passed to the BTC HID functions to be transmitted over a HID
connection.

The HID report parsing functions can also be used to extract variables from a report that has been received over
a HID connection or extract the whole report as a string (for example, for sending over the UART).

HIDReportInit

FUNCTION

This function creates a HID report of the specified size and initialises the contents to zero.

HIDReportInit (numBitsn, nHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

numBits byVAL numBits as INTEGER
Length of the report to create in bits.

nHandle byREF nHandle as INTEGER
Returns a handle to the newly created HID report.

Example:

dim rc, nHandle

// Initialise a report with a length of 40 bits (5 bytes)

rc = HIDReportInit(40, nHandle)

if rc==0 then

 print "\nHID Report Created. Handle: "; nHandle

endif

Expected Output when report is successfully initiailised:

Connected

Encrypting connection

Connection now encrypted

 --- Disconnected

Exiting...

HID Report Created. Handle: 130060

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

353

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

HIDReportAppendInt

FUNCTION

This function inserts an integer into the HID report object at offset bitIndex and of length bitLen.

HIDReportAppendInt (nHandle, bitIndex, bitLen, nVal)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle byVAL nHandle as INTEGER
Handle of the report to be written to.

bitIndex byVAL bitIndex as INTEGER
Location in the report to write the integer to, defined in bits.

bitLen byVAL bitLen as INTEGER
Length of the integer to be written in bits.

nVal byVAL nVal as INTEGER
Value to write to the report. Should not exceed the length defined in bitLen.

Example:

dim rc, nHandle

// Initialise a report with a length of 40 bits (5 bytes)

rc = HIDReportInit(40, nHandle)

if rc==0 then

 print "\nHID Report Created. Handle: "; nHandle

endif

// Write a 16 bit integer at an offset of 8 bits in the report

rc = HIDReportAppendInt(nHandle, 8, 16, 65535)

if rc==0 then

 print "\nSuccessfully appended integer"

endif

Expected Output when the integer is successfully appended to the report:

HID Report Created. Handle: 130060

Successfully appended integer

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

354

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

HIDReportAppendStr

FUNCTION

This function inserts a string into the HID report object at offset bitIndex and of length bitLen.

HIDReportAppendString (nHandle, bitIndex, bitLen, sVal)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle byVAL nHandle as INTEGER
Handle of the report to be written to.

bitIndex byVAL bitIndex as INTEGER
Location in the report to write the string to, defined in bits.

bitLen byVAL bitLen as INTEGER
Length of the string to be written in bits.

sVal byVAL sVal as STRING
String to write to the report. Should not exceed the length defined in bitLen.

Example:

dim rc, nHandle

// String to write into the report

dim str$: str$ = "abc"

// Initialise a report with a length of 40 bits (5 bytes)

rc = HIDReportInit(40, nHandle)

if rc==0 then

 print "\nHID Report Created. Handle: "; nHandle

endif

// Write a 24 bit string at an offset of 8 bits in the report

rc = HIDReportAppendStr(nHandle, 8, 24, str$)

if rc==0 then

 print "\nSuccessfully appended string"

endif

Expected Output when the string is successfully appended to the report:

HID Report Created. Handle: 130060

Successfully appended string

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

355

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

HIDReportImport

FUNCTION

This function imports a string into a HID report object to overwrite the entire report.

HIDReportImport (nHandle, bitLen, sReport$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle byVAL nHandle as INTEGER
Handle of the report to be written to.

bitLen byVAL bitLen as INTEGER
Length of the string to be written in bits.

sReport byVAL sReport as STRING
String to write to the report. Should not exceed the length defined in bitLen.

Example:

dim rc, nHandle

// String to write into the report

dim str$: str$ = "abc"

// Initialise a report with a length of 40 bits (5 bytes)

rc = HIDReportInit(40, nHandle)

if rc==0 then

 print "\nHID Report Created. Handle: "; nHandle

endif

// Write a 24 bit string at an offset of 8 bits in the report

rc = HIDReportAppendStr(nHandle, 8, 24, str$)

if rc==0 then

 print "\nSuccessfully appended string"

endif

Expected Output when the string is successfully imported into the report:

HID Report Created. Handle: 130060

Successfully imported string

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

356

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

HIDReportExport

FUNCTION

This function exports a HID report from a HID report object to a string.

HIDReportExport (nHandle, bitLen, sReport$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle byVAL nHandle as INTEGER
Handle of the report to be written to.

bitLen byREF bitLen as INTEGER
Returns the length of the exported string in bits.

sReport byREF sReport as STRING
Returns the contents of the HID report as a string.

Example:

dim rc, nHandle

// String to write into the report

dim strImport$: strImport$ = "abcde"

dim nLen

dim strExport$

// Initialise a report with a length of 40 bits (5 bytes)

rc = HIDReportInit(40, nHandle)

if rc==0 then

 print "\nHID Report Created. Handle: "; nHandle

endif

// Write a 40 bit string to the report. This overwrites the whole report

rc = HIDReportImport(nHandle, 40, strImport$)

// Export the HID report to a string

rc = HIDReportExport(nHandle, nLen, strExport$)

if rc==0 then

 print "\nSuccessfully exported report. “

 print “Length: "; nLen; " Report: "; strExport$

endif

Expected Output when the report is successfully exported to a string:

HID Report Created. Handle: 130060

Successfully exported reported. Length: 40 Report: abcde

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

357

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

HIDReportExtractInt

FUNCTION

This function extracts an integer from a HID report object at an offset bitIndex of length bitLen.

HIDReportExtractInt (nHandle, bitIndex, bitLen, nVal)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle byVAL nHandle as INTEGER
Handle of the report to be written to.

bitIndex byVAL bitIndex as INTEGER
Location in the report to read the integer from, defined in bits.

bitLen byVAL bitLen as INTEGER
Length of the integer to extract in bits.

nVal byREF nVal as INTEGER
Returns the contents of the HID report as a string.

Example:

dim rc, nHandle

// String to write into the report

dim strImport$: strImport$ = "abcde"

dim nExtract

// Initialise a report with a length of 40 bits (5 bytes)

rc = HIDReportInit(40, nHandle)

if rc==0 then

 print "\nHID Report Created. Handle: "; nHandle

endif

// Write a 40 bit string to the report. This overwrites the whole report

rc = HIDReportImport(nHandle, 40, strImport$)

// Extract the integer from the string at offset 16 and length 8

rc = HIDReportExtractInt(nHandle, 16, 8, nExtract)

if rc==0 then

 print "\nSuccessfully extracted integer: ";nExtract

endif

Expected Output when an integer is successfully extracted from the report:

HID Report Created. Handle: 130060

Successfully extracted integer: 142

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

358

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

HIDReportExtractStr

FUNCTION

This function extracts a string from a HID report object at an offset bitIndex of length bitLen.

HIDReportExtractStr (nHandle, bitIndex, bitLen, sVal)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle byVAL nHandle as INTEGER
Handle of the report to be written to.

bitIndex byVAL bitIndex as INTEGER
Location in the report to read the integer from, defined in bits.

bitLen byVAL bitLen as INTEGER
Length of the integer to extract in bits.

sVal byREF sVal as STRING
Returns the contents of the HID report as a string.

Example:

dim rc, nHandle

// String to write into the report

dim strImport$: strImport$ = "abcde"

dim strExtract$

// Initialise a report with a length of 40 bits (5 bytes)

rc = HIDReportInit(40, nHandle)

if rc==0 then

 print "\nHID Report Created. Handle: "; nHandle

endif

// Write a 40 bit string to the report. This overwrites the whole report

rc = HIDReportImport(nHandle, 40, strImport$)

// Extract the integer from the string at offset 8 and length 16

rc = HIDReportExtractStr(nHandle, 8, 16, strExtract$)

if rc==0 then

 print "\nSuccessfully extracted string: ";strExtract$

endif

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

359

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output when a string is successfully extracted from the report:

HIDReportDestroy

FUNCTION

This function destroys a HID report object.

HIDReportDestroy (nHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle byVAL nHandle as INTEGER
Handle of the report to be written to.

Example:

dim rc, nHandle

// Initialise a report with a length of 40 bits (5 bytes)

rc = HIDReportInit(40, nHandle)

if rc==0 then

 print "\nHID Report Created. Handle: "; nHandle

endif

// Destroy the report

rc = HIDReportDestroy(nHandle)

if rc==0 then

 print "\nSuccessfully destroyed report"

endif

Expected Output when report is successfully destroyed:

HID Report Created. Handle: 130060

Successfully extracted string: bc

HID Report Created. Handle: 130060

Successfully destroyed report

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

360

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

RTC ALARM

The BT900 module contains an inbuilt RTC clocked from an internal 32768Hz clock. This feature has two main
functions:

 To provide a time stamp to define when data was gathered
 To set a time or duration to wake up from Deep Sleep

All the functions where the time is set or read use the 24 hour clock. Leap years are defined as those years
divisible by 4; year 00 is a leap year.

The time and date can be set through the relevant smartBasic commands described below and also by the at+rtc
command. The module will keep time from this point until it is powered down. Then the time and date will reset
to 00:00:00 01/01/00, i.e. midnight on the 1st January year 00.

The alarm can only be used to wake up the module from Deep Sleep. If the module is not in Deep Sleep, no
events will be returned if an alarm triggers.

Once the alarm has been set by any of the commands below the module can either be put automatically into
into Deep Sleep mode using the nSleep parameter. If you should choose to manually put the module into Deep
Sleep mode you can use the SystemStateSet(0) command. Note that you should ensure everything has been
completed before putting the module into Deep Sleep mode. The call to put the module into Deep Sleep, either
through one of the set alarm commands or SystemStateSet(0), should be the last statement the smartBasic
application should make.

On reawakening the firmware performs a full system reset and the Program counter will be loaded with the
reset vector. The module will go through the full initialisation procedure. Should there be an $autorun$
smartBasic application present, this will restart from the first command. In this way it is possible to continually
perform some functionality and then go to sleep in a never ending loop, that can only be broken by disabling the
autorun pin. Partial examples of this are given below.

Note: It is possible to set an RTC Alarm without setting the current time. Once it is powered on, the
module starts keeping track of the time from 00:00:00 01/01/00. It is possible to get the current
time and then calculate the time you want the alarm to trigger from there. Or you could use the
RTCSETALARMDURATION() command which causes the alarm to trigger after a set number of hours
and minutes.

There are also alarm options to trigger every hour, minute or day. It is important to note for the hour and
minute alarms that the first alarm may trigger before you expect. They do not trigger AFTER a minute or hour,
but when the minute or hour counters tick over. So if you set the minute alarm at 11:55:55 then it will trigger at
11:56:00 (after only 5 seconds).

If this application is being run in autorun mode, all subsequent triggers would occur when expected.

The RTC function can also be used to provide a time stamp using the RTCGETTIME() smartBasic command.
However, for this to be meaningful the time should be set to the current date and time.

Note that the RTC will reset back to 00:00:00 01/01/00 if the module is powered down, or is reset using the
Reset line, either during normal working conditions or waking up from Deep Sleep.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

361

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

RTCSetTime

FUNCTION

This function sets the date and time of the RTC.

RTCSETTIME (nYear,nMonth,nDay,nHour,nMin,nSec)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nYear
byVal nYear AS INTEGER
The current year.

nMonth
byRef nMonth AS INTEGER
The current month.

nDay
byVal nDay AS INTEGER
The current day of the month.

nHour
byVal nHour AS INTEGER
The current hour.

nMin
byVal nMin AS INTEGER
The current minute.

nSec
byVal nSec AS INTEGER
The current second.

Note: The following test application was run with the format set to 4.

// ******************** RTCSet.sb*********************************

dim rc

dim strTime$

function handleTimer0()

 rc = RTCGetTime$(strTime$)

 print "\n";strTime$

 strTime$ = ""

endfunc 1

function handleTimer1()

 print "\nTimer 1 has expired"

endfunc 0

onevent EvTmr0 call handleTimer0

onevent EvTmr1 call handleTimer1

rc = RTCSetTime(15,1,8,23,55,0)

print "\nSetting Time ";integer.h' rc

TimerStart(0,2000,1)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

362

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

TimerStart(1,10000,0)

WAITEVENT

print "\nfinished"

Expected Output:

RTCGetTime$

FUNCTION

This function returns a string indicating the date and/or time. The format of the string is as defined in the
RTCSETFORMAT() command.

RTCGETTIME$(strTime$)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

strTime$
byREF strTime$ AS STRING
Returns the date and/or time, formatted as defined in the RTCSETFORMAT() command.

Refer to other functions in this section for examples of this function.

RTCGetTime

FUNCTION

This function returns the time and date as a series of 6 integers, denoting the year, month, day, hour, minute
and second.

RTCGETTIME (nYear,nMonth,nDay,nHour,nMin,nSec)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nYear
byREF nYear AS INTEGER
Returns the current year.

nMonth
byREF nMonth AS INTEGER
Returns the current month.

Setting Time 00000000

23:55:02 08/01/15

23:55:04 08/01/15

23:55:06 08/01/15

23:55:08 08/01/15

23:55:10 08/01/15

Timer 1 has expired

finished

00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

363

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

nDay
byREF nDay AS INTEGER
Returns the current day of the month.

nHour
byREF nHour AS INTEGER
Returns the current hour.

nMin
byREF nMin AS INTEGER
Returns the current minute.

nSec
byREF nSec AS INTEGER
Returns the current second.

Refer to other functions in this section for examples of this function being used.

RTCSetAlarm

FUNCTION

This function sets the date and time when the alarm will be triggered.

RTCSETALARM(nHandle,nYear,nMonth,nDay,nHour,nMin,nSleep)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation. If the function attempts to set the
alarm to a time and date earlier than the present date then error 0x5246 will be returned.

Arguments:

nHandle
byVal nHandle AS INTEGER

ID of the alarm. This parameter is not used in the BT900 and should be set to 0.

nYear
byVal nYear AS INTEGER
The year the alarm is to trigger.

nMonth
byRef nMonth AS INTEGER
The month the alarm is to trigger.

nDay
byVal nDay AS INTEGER
The day of the month the alarm is to trigger.

nHour
byVal nHour AS INTEGER

The hour of day the alarm is to trigger.

nMin
byVal nMin AS INTEGER

The minute the alarm is to trigger

nSleep

byVal nSleep AS INTEGER

 0: Module stays in normal running mode

 1: Module goes into Deep Sleep Mode

For the following test the time had been preset to 23:55:00 08/01/15 by another smartBASIC application.
RTCSetAlarm() was then set up as the $autorun$.sb application and left to run.

In this test application, the alarm has been set to trigger at 00:02:00 09/01/15. The module wakes up and runs
the application printing the downloaded time at that moment. The one second delay is the time it takes the
module to run the application from reset.

The application then attempts to set the alarm with the same time. As this time has already passed an error
message is returned and the application closes.

//************RTCSetAlarm.sb**************

dim rc

dim strAlarm$

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

364

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

function handleTimer0()

 print "\nsleep"

 rc = RTCSetAlarm(0,15,1,9,0,2,1) // set to wake up at 00:02 9/1/15

 if rc != 0 then

 print "\nfailed to set alarm ",integer.h' rc

 endif

endfunc 0

onevent EvTmr0 call handleTimer0

rc = RTCSetFormat(4)

rc = RTCGetTime$(strAlarm$)

print "\n";strAlarm$

TimerStart(0,1000,0)

WAITEVENT

print "\nfinished"

Expected Output:

RTCSetAlarmDuration

FUNCTION

This function sets the alarm as a duration from the current time. The will automatically retrieve the current time
and calculate the desired alarm time using the passed in parameters. This functionality is restricted to just 23
hours and 59 minutes in advance of the current time.

Note: The RTC alarm used in this function can only trigger on full minutes. Therefore the hour and minute
set as the duration my be rounded down. For example if the time was 09:00:55 and a duration of 2
minutes is set, the module will wake up at 09:02:00, ie after 1 minute 5 seconds.

 If this function is used in a recurring manner, subsequent wakeups will happen on time as the next
wake up time will be calculated from the time the module wakes up and so the rounding down will
not occur.

23:55:11 08/01/15

sleep

00:02:01 09/01/15

sleep

failed to set alarm 00005246

finished

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

365

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

RTCSETALARMDURATION (nHandlenHour,nMin,nSleep)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byVal nHandle AS INTEGER
Id of the alarm. This parameter is not used in the BT900 and should be set to 0.

nHour
byVal nHour AS INTEGER
The number of hours before the alarm is triggered.

nMin
byVal nMin AS INTEGER
The number of minutes before the alarm is triggered.

nSleep

byVal nSleep AS INTEGER
 0: Module stays in normal running mode

 1: Module goes into Deep Sleep Mode

For the following test the time had been preset to 23:55:00 08/01/15 by another smartBASIC application.
RTCSetMinute() was then set up as the $autorun$.sb application and left to run.

The alarm is to trigger every six minutes. Once the alarm has been set, the alarm time is read back. You will
notice that the first period has been rounded down to 05:49. This is explained in the not above. After the first
iteration the module is woken every 6 minutes as requested.

//************RTCSetDuration.sb**************

dim rc

dim strAlarm$

function handleTimer0()

 strAlarm$ = ""

 rc = RTCSetAlarmDuration(0,0,6,0) // set to trigger in 6 minutes

 rc = RTCGetAlarm$(0,strAlarm$)

 print "\nAlarm set to ";strAlarm$

 print "\nsleep"

 rc = SystemStateSet(0)

 // or

 // rc = RTCSetAlarmDuration(0,0,6,1)

endfunc 0

onevent EvTmr0 call handleTimer0

rc = RTCSetFormat(4)

rc = RTCGetTime$(strAlarm$)

print "\n";strAlarm$

TimerStart(0,1000,0)

WAITEVENT

print "\nfinished"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

366

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

RTCGetAlarm$

FUNCTION

This function returns the date and time when the alarm will be triggered. This is only relevant to instances
where the alarm has been set by the RTCSETALARM() or RTCSETALARMDURATION() commands.

Note that this command can onle be used if the nSleep parameter in the set alarm commands is set to 0. If this
parameter is set to 1 then the module will go into Deep Sleep mode and no further commands will be accessed.

RTCGETALARM$ (nHandle,strTime$)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byVal nHandle AS INTEGER

ID of the alarm. This parameter is not used in the BT900 and should be set to 0.

strTime$
byREF strTime$ AS STRING
Returns the date and/or time, formatted as defined in the RTCSETFORMAT() command, that the alarm
is to trigger when set by the RTCSETALARM() of RTCSETALARMDURATION() commands.

See the above section for an example of how to use this function in the RTCAlarmDuration() example
application.

RTCGetAlarm

FUNCTION

This function returns the date and time when the alarm will be triggered. This is only relevant to instances
where the alarm has been set by the RTCALARM() or RTCALARMDURATION() commands.

Note that this command can onle be used if the nSleep parameter in the set alarm commands is set to 0. If this
parameter is set to 1 then the module will go into Deep Sleep mode and no further commands will be accessed.

23:55:11 08/01/15

Alarm set to 00:01:00 09/01/15

sleep

00:01:01 09/01/15

Alarm set to 00:07:00 09/01/15

sleep

00:07:01 09/01/15

Alarm set to 00:13:00 09/01/15

sleep

00:13:01 09/01/15

Alarm set to 00:19:00 09/01/15

sleep

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

367

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

RTCGETALARM (strnHandle,nYear,nMonth,nDay,nHour,nMin)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byVal nHandle AS INTEGER
Id of the alarm. This parameter is not used in the BT900 and should be set to 0.

nYear
byREF nYear AS INTEGER
Returns year the alarm is set to trigger.

nMonth
byREF nMonth AS INTEGER
Returns month the alarm is set to trigger.

nDay
byREF nYear AS INTEGER
Returns day the alarm is set to trigger.

nHour
byREF nYear AS INTEGER
Returns hour the alarm is set to trigger.

nMin
byREF nYear AS INTEGER
Returns minute the alarm is set to trigger.

See the above section for an example of how to use this function in the RTCSetAlarmDuration() example
application.

RTCSetFormat

FUNCTION

This function sets the format the the returned date/time string from the RTCGETTIME() and RTCGETALARM
commands().

RTCSETFORMAT (nFormat)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nFormat

byVal nFormat AS INTEGER
Defines the format of the Date/Time string returned by RTCGETTIME() and RTCGETALARM()
 Time only - hh:mm:ss
 Date (UK) only - dd/mm/yy
 Date (US) only - yy/mm/dd
 Time and Date(UK) - hh:mm:ss dd/mm/yy
 Time and Date(US) - hh:mm:ss yy/mm/dd
 Date(UK) and Time - dd/mm/yy hh:mm:ss

 Date(US) and Time - yy/mm/dd hh:mm:ss

// ******************** RTCSetFormat.sb*********************************

dim rc

dim strTime$

dim nFormat

dim nYear

dim nMonth

dim nDay

dim nHour

dim nMin

dim nSec

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

368

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

function handleTimer0()

 strTime$ = ""

 nFormat = nFormat + 1

 if nFormat > 7 then

 exitfunc 0

 endif

 rc = RTCSetFormat(nFormat)

 rc = RTCGetTime$(strTime$)

 print "\n";strTime$

 rc = RTCGetTime(nYear,nMonth,nDay,nHour,nMin,nSec)

 print "\n";nHour;" ";nMin;" ";nSec;" ";nDay;" ";nMonth;" ";nYear

endfunc 1

onevent EvTmr0 call handleTimer0

rc = RTCSetFormat(4)

rc = RTCSetTime(15,1,8,23,55,0) // Sets date to 23:55:00 25/2/11

print "\nSetting Time ";integer.h' rc

rc = RTCGetTime$(strTime$)

print "\n";strTime$

rc = RTCGetTime(nYear,nMonth,nDay,nHour,nMin,nSec)

print "\n";nHour;" ";nMin;" ";nSec;" ";nDay;" ";nMonth;" ";nYear

nFormat = 0

TimerStart(0,1000,1)

WAITEVENT

print "\nfinished"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

369

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

RTCSetMinuteAlarm

FUNCTION

This function sets the alarm to trigger when the minute value changes.

RTCSETMINUTEALARM(nHandle,nSleep)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byVal nHandle AS INTEGER
ID of the alarm. This parameter is not used in the BT900 and should be set to 0.

nSleep
byVal nSleep AS INTEGER
 0: Module stays in normal running mode

 1: Module goes into Deep Sleep Mode

For the following test the time had been preset to 23:55:00 08/01/15 by another smartBASIC application.
RTCSetMinuteAlarm() was then set up as the $autorun$.sb application and left to run.

In the expected output you will see that the module wakes up every minute and prints out the current time
before gong back to sleep. The reason that the recorded time does not show zeroes is that it takes the module a
second to wake up and to start running the smartBASIC application.

Setting Time 00000000

23:55:00 08/01/15

23 55 0 8 1 15

23:55:01

23 55 1 8 1 15

08/01/15

23 55 2 8 1 15

15/01/08

23 55 3 8 1 15

23:55:04 08/01/15

23 55 4 8 1 15

23:55:05 15/01/08

23 55 5 8 1 15

08/01/15 23:55:06

23 55 6 8 1 15

15/01/08 23:55:07

23 55 7 8 1 15

finished

00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

370

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

//************RTCSetMinuteAlarm.sb****************

dim rc

dim strAlarm$

function handleTimer0()

 print "\nsleep"

 rc = RTCSetMinuteAlarm(0,1)

 // or

 // rc = RTCSetMinuteAlarm(0,0)

 // rc = SystemStateSet(0)

endfunc 0

onevent EvTmr0 call handleTimer0

rc = RTCSetFormat(4)

rc = RTCGetTime$(strAlarm$)

print "\n";strAlarm$

TimerStart(0,1000,0)

WAITEVENT

print "\nfinished"

Expected Output:

23:55:11 08/01/15

sleep

23:56:01 08/01/15

sleep

23:57:01 08/01/15

sleep

23:58:01 08/01/15

sleep

23:59:01 08/01/15

sleep

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

371

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

RTCSetHourAlarm

FUNCTION

This function sets the alarm to trigger when the hour value changes.

RTCSETHOUR ALARM(nHandle,nSleep)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byVal nHandle AS INTEGER

ID of the alarm. This parameter is not used in the BT900 and should be set to 0.

nSleep

byVal nSleep AS INTEGER

 0: Module stays in normal running mode

 1: Module goes into Deep Sleep Mode

As with the previous section, the RTC was set to 23:55:00 08/01/15 and the RTCSetHourAlarm() function was set
up as the $autorun$ function.

In the expected output you will see that the module has recorded the time at 00:00:00 09/01/15 as the change
of hour has also taken the RTC into the next day.

//************RTCSetHourAlarm.sb**************

dim rc

dim strAlarm$

function handleTimer0()

 print "\nsleep"

 rc = RTCSetHourAlarm(0,1)

 // or

 // rc = RTCSetHourAlarm(0,0)

 // rc = SystemStateSet(0)

endfunc 0

onevent EvTmr0 call handleTimer0

rc = RTCSetFormat(4)

rc = RTCGetTime$(strAlarm$)

print "\n";strAlarm$

TimerStart(0,1000,0)

WAITEVENT

print "\nfinished"

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

372

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

RTCSetDayAlarm

FUNCTION

This function sets the alarm to trigger when the the date changes at midnight, i.e. when the clock changes from
23:59:59 to 00:00:00.

RTCSETDAYALARM(nHandle,nSleep)

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle
byVal nHandle AS INTEGER
ID of the alarm. This parameter is not used in the BT900 and should be set to 0.

nSleep
byVal nSleep AS INTEGER
 0: Module stays in normal running mode

 1: Module goes into Deep Sleep Mode

This example is very similar to that of the RTCSetHourAlarm() application with the excpetion that the alarm
triggered on the changing day and not the changing hour.

//************RTCSetDayAlarm.sb**************

dim rc

dim strAlarm$

function handleTimer0()

 print "\nsleep"

 rc = RTCSetDayAlarm(0,1)

 // or

 // rc = RTCSetDayAlarm(0,0)

 // rc = SystemStateSet(0)

endfunc 0

onevent EvTmr0 call handleTimer0

rc = RTCSetFormat(4)

rc = RTCGetTime$(strAlarm$)

print "\n";strAlarm$

TimerStart(0,1000,0)

WAITEVENT

print "\nfinished"

23:55:11 08/01/15

sleep

00:00:01 09/01/15

sleep

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

373

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Expected Output:

RTCReset

FUNCTION

This function resets the RTC back to the default value of 00:00:00 01/01/00, i.e. midnight on the 1st January 00.

RTCRESET()

Returns
INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

// ******************** RTCReset.sb*********************************

dim rc

dim strTime$

rc = RTCSetFormat(4) // outputs time as hh:mm:ss dd/mm/yy

rc = RTCSetTime(15,1,8,23,55,0) // Sets date to 23:55:00 08/01/15

print "\nSetting Time ";integer.h' rc

rc = RTCGetTime$(strTime$)

print "\n";strTime$

rc = RTCReset() // Resets time to 00:00:00 01/01/00

print "\nSetting Time ";integer.h' rc

strTime$ = ""

rc = RTCGetTime$(strTime$)

print "\n";strTime$

print "\nfinished"

Expected Output:

23:55:11 08/01/15

sleep

00:00:01 09/01/15

sleep

Setting Time 00000000

23:55:00 08/01/15

Setting Time 00000000

00:00:00 01/01/00

finished

00

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

374

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

LOW POWER MODES

The BT900 utilises two low power modes: Standby Doze and Deep Sleep.

The module will automatically go into StandbyDoze when it is sitting at a WAITEVENT, and will wake up on any
interrupt. If it receives a character over the UART, it will automatically wake up and deal with that character. No
UART data will be lost from standby doze mode.

Enter Deep sleep either by putting the UART Rx line into a break condition (signal low) or by calling the
SystemStateSet(0) command (either explicity or through one of the RTC alarms described in the RTC Alarm
section. From Deep Sleep the module performs a system reboot. The module can be woken from Deep Sleep
mode, either via an RTC interrupt or one of the wake up pins, defined in SIOPinFunctionality above.

The module can alse be woken up from Deep Sleep using the Reset line, however this method will cause the RTC
to reset to 00:00:00 01/01/00.

If you want to wake up via a Wakeup Pin then that pin will need to be set up as described in GpioSetFunc. An
example is shown below where the RTC is initially set to 23:55:00 08/01/15. DeepSleepWakeup.sb outputs the
time for 10s when it is first run and then sets up Wakeup 1 (sio20) as the wakeup pin. (This is button 2 on the
development board.) The module is then put into Deep Sleep mode. Wakeup 1 is then pulsed low, the module
is woken up and DeepSleepWakeup.sb ran again. This process continues indefinitely until the autorun option is
disabled.

For this example, DeepSleepWakeup.sb is set up as the $autorun$ function.

// ******************** DeepSleepWakeup.sb*********************************

dim rc

dim strTime$

function handleTimer0()

 rc = RTCGetTime$(strTime$)

 print "\n";strTime$

 strTime$ = ""

endfunc 1

function handleTimer1()

 rc = GpioSetFunc(20,1,16)

 print "\nSleep"

 rc = SystemStateSet(0)

endfunc 0

onevent EvTmr0 call handleTimer0

onevent EvTmr1 call handleTimer1

TimerStart(0,2000,1)

TimerStart(1,10000,0)

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

375

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

WAITEVENT

print "\nfinished"

Expected Output:

EVENTS AND MESSAGES

smartBASIC is designed to be event driven, which makes it suitable for embedded platforms where it is normal
to wait for something to happen and then respond.

The event handling is done synchronously, meaning the smartBASIC runtime engine has to process a
WAITEVENT statement for any events or messages to be processed. This guarantees that smartBASIC never
needs the complexity of locking variables and objects.

The subsystems which generate events and messages relevant to the routines described in this guide are as
follows:

 BLE events and messages as described here.
 Generic Characteristics events and messages as described here.

23:55:23 08/01/15

23:55:25 08/01/15

23:55:27 08/01/15

23:55:29 08/01/15

23:55:31 08/01/15

Sleep

23:55:53 08/01/15

23:55:55 08/01/15

23:55:57 08/01/15

23:55:59 08/01/15

23:56:01 08/01/15

Sleep

23:57:11 08/01/15

23:57:13 08/01/15

23:57:15 08/01/15

23:57:17 08/01/15

23:57:19 08/01/15

Sleep

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

376

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

MISCELLANEOUS

Bluetooth Result Codes

There are some operations and events that provide a single byte Bluetooth HCI result code (such as the
EVDISCON message). The meaning of the result code is as per the list reproduced from the Bluetooth
Specifications below. No guarantee is supplied as to its accuracy. Consult the specification for more.

Result codes in grey are not relevant to Bluetooth Low Energy operation.

BT_HCI_STATUS_CODE_SUCCESS 0x00

BT_HCI_STATUS_CODE_UNKNOWN_BTLE_COMMAND 0x01

BT_HCI_STATUS_CODE_UNKNOWN_CONNECTION_IDENTIFIER 0x02

BT_HCI_HARDWARE_FAILURE 0x03

BT_HCI_PAGE_TIMEOUT 0x04

BT_HCI_AUTHENTICATION_FAILURE 0x05

BT_HCI_STATUS_CODE_PIN_OR_LINKKEY_MISSING 0x06

BT_HCI_MEMORY_CAPACITY_EXCEEDED 0x07

BT_HCI_CONNECTION_TIMEOUT 0x08

BT_HCI_CONNECTION_LIMIT_EXCEEDED 0x09

BT_HCI_SYNC_CONN_LIMI_TO_A_DEVICE_EXCEEDED 0x0A

BT_HCI_ACL_COONECTION_ALREADY_EXISTS 0x0B

BT_HCI_STATUS_CODE_COMMAND_DISALLOWED 0x0C

BT_HCI_CONN_REJECTED_DUE_TO_LIMITED_RESOURCES 0x0D

BT_HCI_CONN_REJECTED_DUE_TO_SECURITY_REASONS 0x0E

BT_HCI_BT_HCI_CONN_REJECTED_DUE_TO_BD_ADDR 0x0F

BT_HCI_CONN_ACCEPT_TIMEOUT_EXCEEDED 0x10

BT_HCI_UNSUPPORTED_FEATURE_ONPARM_VALUE 0x11

BT_HCI_STATUS_CODE_INVALID_BTLE_COMMAND_PARAMETERS 0x12

BT_HCI_REMOTE_USER_TERMINATED_CONNECTION 0x13

BT_HCI_REMOTE_DEV_TERMINATION_DUE_TO_LOW_RESOURCES 0x14

BT_HCI_REMOTE_DEV_TERMINATION_DUE_TO_POWER_OFF 0x15

BT_HCI_LOCAL_HOST_TERMINATED_CONNECTION 0x16

BT_HCI_REPEATED_ATTEMPTS 0x17

BT_HCI_PAIRING_NOTALLOWED 0x18

BT_HCI_LMP_PDU 0x19

BT_HCI_UNSUPPORTED_REMOTE_FEATURE 0x1A

BT_HCI_SCO_OFFSET_REJECTED 0x1B

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

377

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

BT_HCI_SCO_INTERVAL_REJECTED 0x1C

BT_HCI_SCO_AIR_MODE_REJECTED 0x1D

BT_HCI_STATUS_CODE_INVALID_LMP_PARAMETERS 0x1E

BT_HCI_STATUS_CODE_UNSPECIFIED_ERROR 0x1F

BT_HCI_UNSUPPORTED_LMP_PARM_VALUE 0x20

BT_HCI_ROLE_CHANGE_NOT_ALLOWED 0x21

BT_HCI_STATUS_CODE_LMP_RESPONSE_TIMEOUT 0x22

BT_HCI_LMP_ERROR_TRANSACTION_COLLISION 0x23

BT_HCI_STATUS_CODE_LMP_PDU_NOT_ALLOWED 0x24

BT_HCI_ENCRYPTION_MODE_NOT_ALLOWED 0x25

BT_HCI_LINK_KEY_CAN_NOT_BE_CHANGED 0x26

BT_HCI_REQUESTED_QOS_NOT_SUPPORTED 0x27

BT_HCI_INSTANT_PASSED 0x28

BT_HCI_PAIRING_WITH_UNIT_KEY_UNSUPPORTED 0x29

BT_HCI_DIFFERENT_TRANSACTION_COLLISION 0x2A

BT_HCI_QOS_UNACCEPTABLE_PARAMETER 0x2C

BT_HCI_QOS_REJECTED 0x2D

BT_HCI_CHANNEL_CLASSIFICATION_UNSUPPORTED 0x2E

BT_HCI_INSUFFICIENT_SECURITY 0x2F

BT_HCI_PARAMETER_OUT_OF_MANDATORY_RANGE 0x30

BT_HCI_ROLE_SWITCH_PENDING 0x32

BT_HCI_RESERVED_SLOT_VIOLATION 0x34

BT_HCI_ROLE_SWITCH_FAILED 0x35

BT_HCI_EXTENDED_INQUIRY_RESP_TOO_LARGE 0x36

BT_HCI_SSP_NOT_SUPPORTED_BY_HOST 0x37

BT_HCI_HOST_BUSY_PAIRING 0x38

BT_HCI_CONN_REJ_DUETO_NO_SUITABLE_CHN_FOUND 0x39

BT_HCI_CONTROLLER_BUSY 0x3A

BT_HCI_CONN_INTERVAL_UNACCEPTABLE 0x3B

BT_HCI_DIRECTED_ADVERTISER_TIMEOUT 0x3C

BT_HCI_CONN_TERMINATED_DUE_TO_MIC_FAILURE 0x3D

BT_HCI_CONN_FAILED_TO_BE_ESTABLISHED 0x3E

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

BT900 smartBASIC Extensions
User Guide

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

378

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

ACKNOWLEDGEMENTS

The following are required acknowledgements to address our use of open source code on the BT900 to
implement AES encryption. Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

License Terms

The redistribution and use of this software (with or without changes) is allowed without the payment of fees
or royalties providing the following:

 Source code distributions include the above copyright notice, this list of conditions and the following
disclaimer;

 Binary distributions include the above copyright notice, this list of conditions and the following
disclaimer in their documentation;

 The name of the copyright holder is not used to endorse products built using this software without
specific written permission.

Disclaimer

This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including,
but not limited to, correctness and/or fitness for purpose.

Issue 09/09/2006

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there are options to
use 32-bit types if available).

The combination of mix columns and byte substitution used here is based on that developed by Karl
Malbrain. His contribution is acknowledged.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/bluetooth

	Introduction
	What Does a BTC/BLE Module Contain?

	Module Configuration
	Interactive Mode Commands
	AT I or ATI
	AT+CFG
	AT+BTD *
	AT+BLX
	AT&F

	Core Language Built-in Routines
	Information Routines
	SYSINFO
	SYSINFO$

	UART Interface
	UartOpen

	I2C – Two Wire Interface (TWI)
	SPI Interface
	SpiOpen

	Input/Output Interface Routines
	Events and Messages
	GpioSetFunc
	GpioConfigPwm
	GpioRead
	GpioWrite
	GpioBindEvent/GpioAssignEvent
	GpioUnbindEvent/GpioUnAssignEvent

	Miscellaneous Routines
	ERASEFILESYSTEM

	BTC Extensions Built-in Routines
	Generic Access Profile Functions
	Events and Messages
	EVINQRESP
	EVBTC_INQUIRY_TIMEOUT

	BtcInquiryConfig
	BtcInquiryStart
	BtcInquiryCancel
	BtcDiscoveryConfig
	BtcSetDiscoverable
	BtcSetConnectable
	BtcSetPairable
	BtcInquiryGetReport
	BtcInquiryGetReportFull
	BtcGetClassOfDevice
	BtcSetClassOfDevice
	BtcGetEIRbyIndex
	BtcGetEIRbyTag
	BtcGetFriendlyName
	BtcGetRemoteFriendlyName
	BtcQueryRemoteFriendlyName
	BtcSetFriendlyName
	BtcSniffEnable
	BtcSniffDisable
	BtcQuerySniffSubrating
	BtcQueryModeChange
	BtcSniffSubratingEnable

	Human Interface Device
	Events and Messages
	EVHIDCONN
	EVHIDDISCON
	EVHIDCONTROL
	EVHIDTXEMPTY
	EVBTC_HID_DATA_RECEIVED

	BtcHIDDeviceOpen
	BtcHIDHostOpen
	BtcHIDClose
	BtcHIDConnect
	BtcHIDDisconnect
	BtcHIDRead
	BtcHIDWrite
	BtcHIDControl
	BtcHIDConfig

	Serial Port Profile
	Events and Messages
	EVSPPCONN
	EVBTC_SPP_CONN_TIMEOUT
	EVBTC_SPP_DATA_RECEIVED
	EVSPPTXEMPTY
	EVSPPDISCON
	EVSPPSTATUS

	BtcSppSendStatus
	BtcSppSendBreak
	BtcSPPSetParams
	BtcSPPOpen
	BtcSPPClose
	BtcSPPWrite
	BtcSPPRead
	BtcSPPConnect
	BtcSPPDisconnect

	Stream Functions
	Events and Messages
	EVSTREAMIDLE

	StreamGetUartHandle
	StreamGetSPPHandle
	StreamBridge
	StreamUnBridge
	StreamBridgeConfig

	Pairing, Bonding, and Security Manager Functions
	Events and Messages
	EVBTC_PAIR_REQUEST
	EVBTC_OOB_AVAILABLE_REQUEST
	EVBTC_PIN_REQUEST
	EVBTC_PAIR_RESULT
	EVBTC_AUTHREQ
	EVBTC_PASSKEY

	BtcGetPAIRRequestBDAddr
	BtcGetPINRequestBDAddr
	BtcSendPAIRResp
	BtcSendPINResp
	BtcSavePairings
	BtcPair
	BtcBondingStats
	BtcBondingEraseKey
	BtcBondingEraseAll
	BtcBondingPersistKey
	BtcBondingGetFirst
	BtcBondingGetNext
	BtcSecMngrPasskey
	BtcSecMngrJustWorksConf
	BtcSecMngrOOBAvailable
	BtcSecMngrOOBPref
	BtcSecMngrRetrieveLocalOOBKey
	BtcSecMngrOOBKey
	BtcSecMngrIoCap

	Miscellaneous Functions
	Events and Messages
	EVBTC_DISCOV_TIMEOUT
	EVBTC_REMOTENAME_RECEIVED
	EVBTC_MODE_CHANGE
	EVBTC_SNIFF_SUBRATING

	BtcTxPowerSet
	BtcSetPNPInformation
	BtcGetBDAddrFromHandle
	BtcGetHandleFromBDAddr

	BLE Extensions Built-in Routines
	Bluetooth Address
	BleSetAddressType

	Events and Messages
	EVBLE_ADV_TIMEOUT
	EVBLE_CONN_TIMEOUT
	EVBLE_ADV_REPORT
	EVBLE_FAST_PAGED
	EVBLE_SCAN_TIMEOUT
	EVBLEMSG
	EVDISCON
	EVCONNPARAMREQ
	EVCHARVALEX
	EVCHARVAL
	EVCHARHVC
	EVCHARCCCD
	EVCHARSCCD
	EVCHARDESC
	EVNOTIFYBUF

	Miscellaneous Functions
	BleTxPowerSet
	BleTxPwrWhilePairing
	BleGetConnHandleFromAddr
	BleGetAddrFromConnHandle

	Advertising Functions
	BleAdvertStart
	BleAdvertStop
	BleAdvertConfig
	BleAdvRptInit
	BleScanRptInit
	BleAdvRptGetSpace
	BleAdvRptAddUuid16
	BleAdvRptAddUuid128
	BleAdvRptAppendAD
	BleAdvRptsCommit

	Scanning Functions
	BleScanStart
	BleScanAbort
	BleScanStop
	BleScanFlush
	BleScanConfig
	BleScanGetAdvReport
	BleScanGetAdvReportEx
	BleGetADbyIndex
	BleGetADbyTag
	BleScanGetPagerAddr

	Connection Functions
	Events and Messages
	BleConnect
	BleConnectCancel
	BleConnectConfig
	BleDisconnect
	BleSetCurConnParms
	BleGetCurConnParms
	BleConnMngrUpdCfg

	Whitelist Management Functions
	BleWhitelistCreate
	BleWhitelistDestroy
	BleWhitelistClear
	BleWhitelistSetFilter
	BleWhitelistAddAddr
	BleWhitelistAddIndex
	BleWhitelistInfo

	GATT Server Functions
	Events and Messages
	BleGapSvcInit
	BleGetDeviceName$
	BleSvcRegDevInfo
	BleHandleUuid16
	BleHandleUuid128
	BleHandleUuidSibling
	BleServiceNew
	BleServiceCommit
	BleSvcAddIncludeSvc
	BleAttrMetadata
	BleAttrMetadataEx
	BleCharNew
	BleCharDescUserDesc
	BleCharDescPrstnFrmt
	BleCharDescAdd
	BleCharCommit
	BleCharValueRead
	BleCharValueWrite
	BleCharValueNotify
	BleCharValueIndicate
	BleCharDescRead

	GATT Client Functions
	Events and Messages
	EVGATTCTOUT
	EVDISCPRIMSVC
	EVDISCCHAR
	EVDISCDESC
	EVFINDCHAR
	EVFINDDESC
	EVATTRREAD
	EVATTRWRITE
	EVNOTIFYBUF
	EVATTRNOTIFY

	BleGattcOpen
	BleGattcClose
	BleDiscServiceFirst / BleDiscServiceNext
	BleDiscCharFirst / BleDiscCharNext
	BleDiscDescFirst /BleDiscDescNext
	BleGattcFindChar
	BleGattcFindDesc
	BleGattcRead/BleGattcReadData
	BleGattcWrite
	BleGattcWriteCmd
	BleGattcNotifyRead

	Attribute Encoding Functions
	BleEncode8
	BleEncode16
	BleEncode24
	BleEncode32
	BleEncodeFLOAT
	BleEncodeSFLOATEX
	BleEncodeSFLOAT
	BleEncodeTIMESTAMP
	BleEncodeSTRING
	BleEncodeBITS

	Attribute Decoding Functions
	BleDecodeS8
	BleDecodeU8
	BleDecodeS16
	BleDecodeU16
	BleDecodeS24
	BleDecodeU24
	BleDecode32
	BleDecodeFLOAT
	BleDecodeSFLOAT
	BleDecodeTIMESTAMP
	BleDecodeSTRING
	BleDecodeBITS

	Pairing, Bonding, and Security Manager Functions
	Pairing and Bonding Functions
	BleBondingStats
	BleBondingPersistKey
	BleBondingIsTrusted
	BleBondingEraseKey
	BleBondingEraseAll
	BleBondMngrGetInfo

	Security Manager Functions
	Events and Messages
	BleSecMngrJustWorksConf
	BleSecMngrOobPref
	BleSecMngrOobAvailable
	BleAcceptPairing
	BleSecMngrPasskey
	BleSecMngrOOBkey
	BleSecMngrKeySizes
	BleSecMngrIoCap
	BleSecMngrBondReq
	BlePair
	BleEncryptConnection

	HID Report parsing
	HIDReportInit
	HIDReportAppendInt
	HIDReportAppendStr
	HIDReportImport
	HIDReportExport
	HIDReportExtractInt
	HIDReportExtractStr
	HIDReportDestroy

	RTC Alarm
	RTCSetTime
	RTCGetTime$
	RTCGetTime
	RTCSetAlarm
	RTCSetAlarmDuration
	RTCGetAlarm$
	RTCGetAlarm
	RTCSetFormat
	RTCSetMinuteAlarm
	RTCSetHourAlarm
	RTCSetDayAlarm
	RTCReset

	Low Power Modes
	Events and Messages
	Miscellaneous
	Bluetooth Result Codes

	Acknowledgements
	License Terms
	Disclaimer

