

Getting started with PalmSens SDK

for WinForms

Based on PalmSens SDK v5.7

Last revision: August 16, 2019

© 2019 PalmSens BV

www.palmsens.com

 1

Contents
Contents of the PalmSens SDK .. 3

Example programs .. 4

Compatible devices and firmware ... 5

Using the SDK in your Visual Studio.NET project .. 6

Add SDK References to the project .. 6

Add PSCommSimpleWinforms or PS component to your user interface (simplified wrapper only) 6

PalmSens.Core.dll .. 8

Working with files .. 10

Loading a method file (.psmethod) .. 10

Setting up a method ... 10

Saving a method ... 11

Loading and saving data ... 12

Loading data from PalmSens 4 internal storage .. 13

Connecting and Measuring ... 14

Connecting to a device ... 14

Receive idle status readings .. 15

Manually controlling the device.. 16

Measuring ... 16

Disconnecting and disposing the device ... 19

Possible causes of communication issues .. 19

Data analysis and manipulation using the simplified wrapper .. 21

Obtaining the measured values ... 21

Smoothing/Filtering ... 21

Baseline Subtraction ... 21

Basic operations ... 22

Peak and level detection ... 22

Equivalent circuit fitting .. 23

Appendix A: Parameters for each technique ... 24

Common properties .. 24

Pretreatment settings .. 25

Linear Sweep Voltammetry (LSV) [0] ... 25

Differential Pulse Voltammetry (DPV) [1]... 25

Square Wave Voltammetry (SWV) [2] .. 25

Normal Pulse Voltammetry (NPV) [3] ... 26

AC Voltammetry (ACV) [4] ... 26

Cyclic Voltammetry (CV) [5] ... 26

Fast Cyclic Voltammetry Scans ... 26

Chronopotentiometric Stripping (SCP) [6] .. 27

2

Chronoamperometry (CA) [7] .. 27

Pulsed Amperometric Detection (PAD) [8] ... 27

Fast Amperometry (FAM) [9] .. 27

Chronopotentiometry (CP) [10] .. 28

Open Circuit Potentiometry (OCP) ... 28

Multiple Pulse Amperometry (MPAD) [11] .. 28

Electrochemical Impedance Spectroscopy (EIS) ... 28

Time Scan ... 29

Potential Scan ... 30

Recording extra values (BiPot, Aux, CE Potential…) .. 30

Multiplexer .. 30

Multiplexer settings .. 31

Versus OCP .. 31

Properties for EmStat Pico .. 32

 3

1 Contents of the PalmSens SDK

The PalmSens SDK contains the following libraries and projects:

PalmSens.Core.dll & PalmSens.Core.Windows.dll:

These libraries contain the namespaces with all the necessary files for using PalmSens/EmStat devices in

your software.

▪ PalmSens All necessary classes and functions for performing measurements and

 doing analysis with PalmSens or EmStat.

▪ PalmSens.Comm For Serial, USB or TCP communication with PalmSens or EmStat

▪ PalmSens.DataFiles For saving and loading method and data files

▪ PalmSens.Devices For handling communications and device capabilities

▪ PalmSens.Techniques Contains all measurement techniques for PalmSens and EmStat

▪ PalmSens.Units Contains a collection of units used by these libraries

PalmSens.Core.Simplified.csproj & PalmSens.Core.Simplified.WinForms.csproj:

These projects contain an open source wrapper for the PalmSens.Core.dll &

PalmSens.Core.Windows.dll. This wrapper gives you quick and easy access to all the basic functions of

the PalmSens/EmStat devices and automatically handles most potential threading issues for you:

▪ Connecting

▪ Manual control of the cell

▪ Running measurements

▪ Accessing and processing measured data

▪ Analyzing and manipulating data

SDKPlot.csproj and SDKPlot.WinForms.csproj

These projects contain a simple open source plot control that you can use to plot your measurements in

real-time.

OxyPlot.dll and OxyPlot.WindowsForms.dll:

These libraries required when using the SDK’s plot based on the open source OxyPlot library,
http://www.oxyplot.org/.

4

1.1 Example programs

The following examples are included. All examples use the simplified wrapper for the PalmSens.Core

libraries, except the Console Example.

Example – Console Example (C#):

Shows how to discover devices, establish a connection and run a measurement using only the

PalmSens.Core.dll & PalmSens.Core.Windows.dll

Example – Basic Example (C#):

Shows how to make a connection and run a measurement, with a minimum amount of code.

Example – Plot Example (C#):

Shows how to make a connection, run a measurement and plot the results.

Example – Electrochemical Impedance Spectroscopy Plot Example (C#):

Shows how to make a connection, run an Electrochemical Impedance Spectroscopy measurement

and plot the results.

Example – Import, Analyze and Save Data Example (C#):

Shows how to load and measurements and methods from and to *.pssession and *.psmethod files,

and how to smooth data, manipulate data and detect peaks.

Example – Multiplexer Example (C#):

Shows how to make a connection and run a measurement on different multiplexer channels.

Example – Auxilliary/BiPot Example (C#):

Shows how to measure additional data from the auxiliary port or a bipot.

Example – Internal Storage Example (C#):

Shows how to navigate and access files on the PalmSens 4’s internal storage.

Example – Electrochemical Impedance Spectroscopy Fit Example (C#):

Shows how perform an equivalent circuit analysis on an EIS frequency scan measurement.

Example – Peak Detection Example (C#):

Shows how to perform an advanced peak detection for Linear Sweep Voltammetry and Cyclic

Voltammetry measurements.

The following examples utilize asynchronous programming to prevent the PalmSens SDK libraries from

blocking the user interface. Please note that when using the async functionalities of the core not to mix in

any synchronous functions that communicate with the PalmSens/EmStat instrument.

Example – Basic Example Async (C#):

Shows how to make a connection and run a measurement, with a minimum amount of code.

Example – Plot Example Async (C#):

Shows how to make a connection, run a measurement and plot the results.

Example – Multi Channel Example (C#):

Shows how to make a connection to multiple channels, run different types of measurements and

plot the results.

Example – Electrochemical Impedance Spectroscopy Fit Example Async (C#):

Shows how perform an equivalent circuit analysis on an EIS frequency scan measurement.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/

 5

Example – Peak Detection Example Async (C#):

Shows how to perform an advanced peak detection for Linear Sweep Voltammetry and Cyclic

Voltammetry measurements.

1.2 Compatible devices and firmware

 Minimum required

firmware version

EmStat 3.5

EmStat 2 7.5

EmStat 3 7.5

EmStat 3+ 7.5

EmStat Pico 1.1

MultiEmStat 7.5

PalmSens 3 2.8

PalmSens 4 1.6

MultiPalmSens 1.6

6

2 Using the SDK in your Visual Studio.NET project

2.1 Add SDK References to the project

Right-click on the References map in your project and click Add Reference:

Reference external libraries (*.dll files) by selecting them via the ‘Browse’ button and reference project files

(*.csproj) by adding them to your solution and referencing the project. (Important! When using the

PalmSens SDK without the simplified wrapper the CoreDependencies must be initiated before you run a

measurement, to do this call the PalmSens.Windows.CoreDependencies.Init() method one time

beforehand)

The PalmSens.Core.dll and PalmSens.Core.Windows.dll libraries should always be referenced. If you

wish to use the simplified wrapper to control your devices the PalmSens.Core.Simplified.csproj and

PalmSens.Core.Simplified.WinForms.csproj should be referenced. To use the plot control the

SDKPlot.csproj, SDKPlot.WinForms.csproj, OxyPlot.dll, and OxyPlot.WindowsForms.dll should be

referenced.

If your project does not build please make sure you are targeting the .NET Framework 4.7.2 or higher,

you are using visual studio 2017 or higher, and that the .NET standard 2.0 is available.

2.2 Add PSCommSimpleWinforms or PS component to your user

interface (simplified wrapper only)

First import the PalmSens.Core.Simplified.csproj and

PalmSens.Core.Simplified.WinForms.csproj into your solution

and build the PalmSens.Core.Simplified.WinForms project.

Then reference these projects in your project. Next, go to the

designer of your Main Form and look for the

PSCommSimpleWinforms component in your toolbox. Drag

and drop this component on top of your Form. If you would like

to develop for a multi channel instrument use the

PSMultiCommSimpleWinForms component instead.

 7

Finally, select the PSCommSimpleWinforms/

PSMultiCommSimpleWinForms component in your form, go to

the properties window and set the property Parent to reference

the current form. (This is necessary for the simplified

PalmSens.Core wrapper to automatically handle potential

threading issues for you).

8

3 PalmSens.Core.dll

The basis for handling measurements is the PalmSens.Measurement class, or the

PalmSens.Core.Simplified.Data.SimpleMeasurement class when using the simplified wrapper.

The measurement class contains all classes, functions, and parameters necessary for performing a

measurement with a PalmSens or EmStat instrument. It has one method and can contain multiple curves.

Curves are a representation of the data in the measurement used for plotting and analysis.

Measurement

Method
Curve

ArrayList

Curve 1

Curve 2

Curve n

 9

The following diagram shows the inheritance structure of the Method classes:

Method

TimeMethod

Amperometric
Detection

Chrono
Amperometry

Fast
Amperometry

Fast
Potentiometry

Impedimetric
Method

MultiplePulse
Amperometry

PulsedAmp
Detection

Potentiometry

MultiStep
Amperometry/
Potentiometry

ScanMethod

Potential
Method

acVoltammetry

Cyclic
Voltammetry

LinearSweep

Pulse

NormalPulse

DifferentialPulse

SquareWave

Chrono
PotStripping

10

4 Working with files

As of version 5 of the PalmSens SDK and PSTrace measurements and their corresponding methods are

stored in *.pssession files. Methods can be stored separately in *.psmethod files.

The PalmSens SDK is backward compatible with following filetypes:

 vs potential (scan method) Measurement vs time

Method file .pms (before 2012) .pmt (before 2012)

Method file .psmethod (default) .psmethod (default)

Data (single curve) file .pss .pst

Analysis curves file .psd

Multiplexer curves file .mux

4.1 Loading a method file (.psmethod)

In order to use the following examples, make sure the PalmSens.Core.dll and

PalmSens.Core.Windows.dll are added as references in your project. For the examples using the

Simplified Core wrapper the PalmSens.Core.Simplified.csproj and

PalmSens.Core.Simplified.WinForms.csproj must also be referenced.

Simplified PalmSens.Core:

using PalmSens;

using PalmSens.Core.Simplified.WinForms;

Add these namespaces at the top of the document.

Method method = SimpleLoadSaveFunctions.LoadMethod(filepath);

This method loads a *.psmethod file from the specified file path (i.e. C:\\YourMethod.psmethod).

PalmSens.Core:

using PalmSens;

using PalmSens.Windows;

Add these namespaces at the top of the document.

Method method = LoadSaveHelperFunctions.LoadMethod(filepath);

This method loads a *.psmethod file from the specified file path (i.e. C:\\YourMethod.psmethod).

4.2 Setting up a method

The next example defines a Linear Sweep Voltammetry method with the same parameters shown in the

table on the previous page.

Example:

using PalmSens;

using PalmSens.Techniques;

Add these namespaces at the top of the document.

 11

LinearSweep lsv = new LinearSweep();

Instantiate a new Linear Sweep Voltammetry method.

lsv.BeginPotential = -1f;
lsv.EndPotential = 1f;

lsv.StepPotential = 0.01f;

lsv.Scanrate = 1f;

Define the method’s parameters.

lsv.Ranging.StartCurrentRange = new CurrentRange(CurrentRanges.cr1uA);

lsv.Ranging.MaximumCurrentRange = new CurrentRange(CurrentRanges.cr10uA);

lsv.Ranging.MaximumCurrentRange = new CurrentRange(CurrentRanges.cr100pA);

Define the current range settings. The CurrentRange constructor uses the enum

PalmSens.CurrentRanges to specify its range. Older versions of the SDK used an integer to specify its

range:

-1 = 100 pA
 0 = 1 nA

 1 = 10 nA

 2 = 100 nA

 3 = 1 uA
 4 = 10 uA

 5 = 100 uA

 6 = 1 mA
 7 = 10 mA

 8 = 100 mA

4.3 Saving a method

To save the Linear Sweep Voltammetry method with the parameters as defined in the previous example,

the following examples can be used:

Simplified PalmSens.Core:

using PalmSens;
using PalmSens.Core.Simplified.WinForms;

Add these namespaces at the top of the document.

SimpleLoadSaveFunctions.SaveMethod(lsv, filepath);

This saves the previously defined Linear Sweep Voltammetry method (lsv) to a *.psmethod file specified in

the file path (i.e. C:\\YourMethod.psmethod).

PalmSens.Core:

using PalmSens;
using PalmSens.Windows;

Add these namespaces at the top of the document.

LoadSaveHelperFunctions.SaveMethod(lsv, filepath);

This saves the previously defined Linear Sweep Voltammetry method (lsv) to a *.psmethod file specified in

the file path (i.e. C:\\YourMethod.psmethod).

12

4.4 Loading and saving data

Data from measurements can be loaded from and stored to

*.pssession files. This contains a session with one or more

measurements containing its respective method and curves.

Loading measurements from *.pssession file a is done by the

following code:

Simplified PalmSens.Core:

The simplified wrapper for the PalmSens.Core libraries uses the

SimpleMeasurement and SimpleCurve classes from the

PalmSens.Core.Simplified.Data namespace instead of the PalmSens.Measurement,

PalmSens.Plottables.Curve and PalmSens.Plottables.EISData classes. The SimpleMeasurement and

SimpleCurve classes make it easier to perform basic functions such as:

• Creating a curve with different units from a measurement (for example a curve with charge

over time).

• Finding peaks in a curve.

• Determining the moving average baseline of a curve.

• Performing basic operations on a curve (Addition, Subtraction, Multiplication, Log10,

Differentiation, Integration).

using PalmSens;
using PalmSens.Core.Simplified.Data;

using PalmSens.Core.Simplified.WinForms;

Add these namespaces at the top of the document.

SimpleLoadSaveFunctions.SaveMeasurement(lsv, filepath);

This saves a SimpleMeasurement to a *.pssession file specified in the file path (i.e.

C:\\YourData.pssession).

PalmSens.Core:

using PalmSens;

using PalmSens.Data;

using PalmSens.Windows;

Add these namespaces at the top of the document.

SessionManager session = new SessionManager();

session.AddMeasurement(measurement);

LoadSaveHelperFunctions.SaveSessionFile(filepath, session);

This saves a measurement (PalmSens.Measurement class) to a *.pssession file specified in the filepath

(i.e. C:\\YourData.pssession).

 13

4.5 Loading data from PalmSens 4 internal storage

When connected to a PalmSens 4 it is possible to list and retrieve the measurements stored on its

internal storage. The documentation on Connecting explains how to connect to a device and create an

instance of a CommManager.

Simplified PalmSens.Core:

using PalmSens;

using PalmSens.Data;

CommManager comm = psCommSimpleWinForms.Comm;

List<DeviceFile> DeviceFiles = comm.ClientConnection.GetDeviceFiles(“”); //Get the
contents from the root directory

PalmSens.Core:

using PalmSens;

using PalmSens.Data;

List<DeviceFile> DeviceFiles = comm.ClientConnection.GetDeviceFiles(“”); //Get the
contents from the root directory

The code above lists all the files / folder in the root (“”) of the PalmSens 4’s internal storage. The
DeviceFile class contains information on the Type (File/Folder), Name, Dir (Path) and Size. To list the

contents of a certain folder pass on the following argument to the GetDeviceFiles method.

List<DeviceFile> DeviceFiles = comm.ClientConnection.GetDeviceFiles(file.Dir + "\\" +

file.Name);

Where the file object refers to a DeviceFile of the type folder. To get the contents of a DeviceFile of the

type measurement use the GetDeviceFile method.

DeviceFile rawData = comm.ClientConnection.GetDeviceFile(file.Dir + "/" + file.Name);

This returns a DeviceFile which has a the unparsed measurement stored in its Content property. This can

be parsed by creating a new instance of the Measurement Class and parsing the data, for more info

please refer to the Internal Storage Example.

14

5 Connecting and Measuring

The following chapter details how to connect to a device, read data from the device, manually controlling

the potential, run measurements on the device and finally how to properly close a connection to a device.

5.1 Connecting to a device

The following example shows how to get a list of all available devices and available serial com ports, and

how to connect to one of the discovered devices that.

Simplified PalmSens.Core:

using PalmSens.Devices;

Add this namespace at the top of the document.

Device[] devices = psCommSimpleWinForms.ConnectedDevices;
psCommSimpleWinForms.Connect(devices[0]);

The first line returns an array of all the connected devices, and the second connects to the first device in

the array of connected devices. When Bluetooth devices should also be discovered set

psCommSimpleWinForms.EnableBluetooth = true first.

PalmSens.Core:

using PalmSens.Comm;

using PalmSens.Devices;
using PalmSens.Windows.Devices;

Add these namespaces at the top of the document.

//List of discover functions

List<DeviceList.DiscoverDevicesFunc> discFuncs = new
List<DeviceList.DiscoverDevicesFunc>();

Create an empty list of device discovery functions.

discFuncs.Add(USBCDCDevice.DiscoverDevices); //Default for PS4

discFuncs.Add(FTDIDevice.DiscoverDevices); //Default for Emstat + PS3

discFuncs.Add(SerialPortDevice.DiscoverDevices); //Devices connected via serial port

discFuncs.Add(BluetoothDevice.DiscoverDevices); //Bluetooth devices (PS4, PS3, Emstat
Blue)

Add the discovery functions for the types of devices you would like to discover.

string errors;

Device[] devices = new DeviceList(discFuncs).GetAvailableDevices(out errors);

The GetAvailableDevices() method has an additional optional parameter which must be set to true when

Bluetooth devices should be included in the search.

try
{

device.Open(); //Open the device to allow a connection

 comm = new CommManager(devices[0]); //Connect to the device

}
catch (Exception ex)

{

device.Close();
}

 15

To prevent your program from crashing it is recommended to use a try catch sequence when connecting

to a device, this way a device will be closed again when an exception occurs. This code will connect to

the first device in the array of discovered devices.

5.2 Receive idle status readings

The readings of PalmSens can be read continuously using the ReceiveStatus event. The following

information can be found in the status object that is received using this event:

- AuxInput (auxiliary input in V, Status.GetExtraValueAsAuxVoltage())

- Current (in uA, Status.CurrentReading.Value or Status.CurrentReading.ValueInRange)

- Current2 (in uA, in case a BiPot is used, Status.GetExtraValueAsBiPotCurrent())

- Noise (Status.Noise)

- CurrentRange (the current range in use at the moment, Status.CurrentReading.CurrentRange)

- CurrentStatus (as PalmSens.Comm.ReadingStatus is ok, underload or overload,

Status.CurrentReading.ReadingStatus)

- Potential (measured potential, Status.PotentialReading.Value)

- ReverseCurrent (the reverse current for SquareWave, Status.ExtraValue)

- PretreatmentPhaseStatus (None, Conditioning, Depositing or Equilibrating,

Status.PretreatmentPhase)

- VoltageStatus (as PalmSens.Comm.ReadingStatus is ok, underload or overload,

Status.PotentialReading.ReadingStatus)

Simplified PalmSens.Core:

psCommSimpleWinForms.ReceiveStatus += PsCommSimpleWinForms_ReceiveStatus;

Either subscribe to the ReceiveStatus event of the

psCommSimpleWinForms component via the designer or

programmatically. It is not required to be connected to a device first.

private void psCommSimpleWinForms_ReceiveStatus(object

sender, PalmSens.Comm.StatusEventArgs e)
{

Status status = e.GetStatus();

}

The status is obtained from the event’s StatusEventArgs.

PalmSens.Core:

comm.ReceiveStatus += Comm_ReceiveStatus;

To get the device’s status updates subscribe to the CommManager’s ReceiveStatus event after

connecting to a device. (comm is a reference to the instance of the CommManager created when

connecting to a device).

private void Comm_ReceiveStatus(object sender, StatusEventArgs e)

{
Status status = e.GetStatus();

}

The status is obtained from the event’s StatusEventArgs.

16

5.3 Manually controlling the device

Depending on your device’s capabilities it can be used to set a potential/current and to switch current

ranges. The potential can be set manually in potentiostatic mode and the current can be set in

galvanostatic mode. The following examples show how to manually set a potential.

Simplfied PalmSens.Core:

psCommSimpleWinForms.SetCellPotential(1f);

psCommSimpleWinForms.TurnCellOn();

The psCommSimpleWinforms component must be connected to a device before you can set its potential

and control the cell. To turn the cell off call psCommSimpleWinForms.TurnCellOff().

PalmSens.Core:

comm.Potential = 1f;
comm.CellOn = true;

The device can be controlled using the CommManager that was created when connecting to the device.

When the cell is off no potential will be set. (comm is a reference to the instance of the CommManager

created when connecting to a device).

5.4 Measuring

Starting a measurement is done by sending method parameters to a PalmSens/EmStat device. Events

are raised when a measurement has been started/ended, when a new curve/scan is started/finished, and

when new data is received during a measurement.

Simplified PalmSens.Core:

using PalmSens.Core.Simplified.Data;

Add these namespaces at the top of the document.

psCommSimpleWinForms.MeasurementStarted += PsCommSimpleWinForms_MeasurementStarted;

//Raised when a measurement begins

psCommSimpleWinForms.MeasurementEnded += PsCommSimpleWinForms_MeasurementEnded;

//Raised when a measurement is ended

psCommSimpleWinForms.SimpleCurveStartReceivingData +=

PsCommSimpleWinForms_SimpleCurveStartReceivingData; //Raised when a new SimpleCurve

Device Capabilities

The capabilities of a connected device can either accessed via the

CommManager.Capabilities or the psCommSimpleWinForms.Capabilities

property. The DeviceCapabilities contains properties such as its maximum potential,

supported current ranges and support for specific features

(galvanostat/impedance/bipot). The DeviceCapabilities can also be used to

determine whether a certain method is compatible with a device using either

method.Validate(DeviceCapabilities) or

psCommSimpleWinforms.ValidateMethod(method).

 17

instance starts receiving datapoints, returns a reference to the active SimpleCurve

instance

Subscribing to these events informs you on the status of a measurement and gives you references to the

active SimpleCurve instances. (psCommSimpleWinForms is a reference to the instance of the

psCommSimpleWinForms component in the Form).

SimpleMeasurement activeSimpleMeasurement = psCommSimpleWinForms.Measure(method);

This line starts the measurement described in the instance of the method class. It returns a reference to

the instance of the SimpleMeasurement, in the case of a connection error or invalid method parameters it

returns null. Optionally, when using a multiplexer the channel can be specified as an integer, for example

psCommSimpleWinForms.Measure (method,2). (method is a reference to an instance of the

PalmSens.Method class, methods can be found in the namespace PalmSens.Tecnhniques more

information on methods and their parameters is available in chapter 7).

SimpleCurve _activeSimpleCurve;

private void PsCommSimpleWinForms_SimpleCurveStartReceivingData(object sender,
SimpleCurve activeSimpleCurve)

{

_activeSimpleCurve = activeSimpleCurve;
 _activeSimpleCurve.NewDataAdded += _activeSimpleCurve_NewDataAdded;

 _activeSimpleCurve.CurveFinished += _activeSimpleCurve_CurveFinished;

}

private void _activeSimpleCurve_NewDataAdded(object sender,

PalmSens.Data.ArrayDataAddedEventArgs e)

{

int startIndex = e.StartIndex;

int count = e.Count;

 double[] newData = new double[count];
 (sender as SimpleCurve).YAxisValues.CopyTo(newData, startIndex);

}

private void _activeCurve_Finished(object sender, EventArgs e)

{

_activeSimpleCurve.NewDataAdded -= _activeSimpleCurve_NewDataAdded;

 _activeSimpleCurve.Finished -= _activeSimpleCurve_Finished;
}

This code shows you how to obtain a reference to the instance of the active SimpleCurve currently

receiving data from the SimpleCurveStartReceivingData event. It also shows how to subscribe this

SimpleCurve’s NewDataAdded and CurveFinished events and how these events can be used to retrieve

the values of new data points from the Simple Curve as soon as they are available.

During a measurement the property psCommSimpleWinForms.DeviceState property equals either

CommManager.DeviceState.Pretreatment or CommManager.DeviceState.Measurement.

PalmSens.Core:

using PalmSens;
using PalmSens.Comm;

using PalmSens.Plottables;

Add these namespaces at the top of the document.

comm.BeginMeasurement += Comm_BeginMeasurement; //Raised when a measurement begins,
returns a reference to its measurement instance

18

comm.EndMeasurement += Comm_EndMeasurement; //Raised when a measurement is ended

comm.BeginReceiveCurve += Comm_BeginReceiveCurve; //Raised when a curve instance
begins receiving datapoints, returns a reference to the active curve instance

comm.BeginReceiveEISData += Comm_BeginReceiveEISData; //Raised when a EISData instance
begins receiving datapoints, returns a reference to the active EISData instance

Subscribing to these events informs you on the status of a measurement and gives you the references to

the active measurement and curve instances. (comm is a reference to the instance of the CommManager

created when connecting to a device).

comm.Measure(method);

This line starts the measurement described in the instance of the method class. Optionally, when using a

multiplexer the channel can be specified as an integer, for example comm.Measure(method,2). (method is

a reference to an instance of the PalmSens.Method class, methods can be found in the namespace

PalmSens.Techniques more information on methods and their parameters is available in chapter 7).

Measurement measurement;

private void Comm_BeginMeasurement(object sender, ActiveMeasurement newMeasurement)

{

measurement = newMeasurement;
}

When the BeginMeasurement event is raised it returns a reference to the instance of the current

measurement. Alternatively, this reference can be obtained from the CommManager.ActiveMeasurement

property after the measurement has been started.

Curve _activeCurve;

private void Comm_BeginReceiveCurve(object sender, PalmSens.Plottables.CurveEventArgs
e)

{

_activeCurve = e.GetCurve();
 _activeCurve.NewDataAdded += _activeCurve_NewDataAdded;

 _activeCurve.Finished += _activeCurve_Finished;

}

private void _activeCurve_NewDataAdded(object sender,

PalmSens.Data.ArrayDataAddedEventArgs e)

{

int startIndex = e.StartIndex;

int count = e.Count;

 double[] newData = new double[count];
 (sender as Curve).GetYValues().CopyTo(newData, startIndex);

}

private void _activeCurve_Finished(object sender, EventArgs e)

{

_activeCurve.NewDataAdded -= _activeCurve_NewDataAdded;
 _activeCurve.Finished -= _activeCurve_Finished;

}

This code shows you how to obtain a reference to the instance of the active curve currently receiving

data from the BeginReceiveCurve event. It also shows how to use the active curve’s NewDataAdded and

Finished events to retrieve the values of new data points from the curve as soon as they are available.

EISData _activeEISData;

 19

private void Comm_BeginReceiveEISData(object sender, PalmSens.Plottables.EISData

eisdata)

{
_activeEISData = eisdata;

_activeEISData.NewDataAdded += _activeEISData_NewDataAdded; //Raised when new

data is added
_activeEISData.NewSubScanAdded += _activeEISData_NewSubScanAdded; //Raised when

a new frequency scan is started

_activeEISData.Finished += _activeEISData_Finished; //Raised when EISData is
finished

}

When performing Impedance Spectroscopy measurements data points are stored in an instance of the

EISData class and these events should be used similarly to those used for other measurements.

During a measurement the property comm.Busy is TRUE.

5.5 Disconnecting and disposing the device

The com port is automatically closed when the instance of the CommManager is disconnected or

disposed.

Simplified PalmSens.Core:

psCommSimpleWinForms.Disconnect(); or psCommSimpleWinForms.Dispose();

PalmSens.Core:

comm.ClientConnection.Run(() => comm.Disconnect()).Wait() or comm.Disconnect(); or

comm.Dispose();

The psCommSimpleWinForms.Disconnected event is raised when the device is disconnected, this can

be particularly useful when the device was disconnected due to a communication error as the event also

returns the respective exception as an argument in that case.

5.6 Possible causes of communication issues

Communication issues can occur when certain commands are executed at the same time, i.e. starting a

measurement and triggering a read potential at the same time will result in the device receiving

commands in an incorrect order. These issues typically arise when a timer is used, when using multiple

threads, and when invoking commands in a callback on one on the

psCommSimpleWinForms/psMultiCommSimpleWinforms events.

When using the simplified core wrapper communication issues are prevented as much as possible. Using

commands to control the device from your psCommSimpleWinForms/psMultiCommSimpleWinforms

event callbacks is blocked, to prevent communication issues. With the asynchronous methods it is

possible to control your device from one of these callbacks as the command will be delayed and run after

completion of the previous command, however, as it can be run at a later point in time it is important to

check whether all conditions for executing the command are still true. This can be adjusted in the

PSCommSimple.cs or PSMultiCommSimple.cs files in the PalmSens.Core.Simplified project.

When using the PalmSens.Core directly useful aids to prevent threading issues are the

comm.ClientConnection.Run and comm.ClientConnection.Run<T> methods. These assure the

commands are run on the correct context which prevents communication errors due to multiple threads

communicating with the device simultaneously. When using multiple threads it is highly recommended to

use these helper methods when invoking methods that communicate with the device (i.e. Measure,

Current, Potential, CurrentRange and CellOn) from a different thread.

20

Setting a value safely:

comm.ClientConnection.Run(() => { comm.CellOn = true; }).Wait();

or when connected to a device asynchronously

await comm.ClientConnection.RunAsync(() => comm.SetCellOnAsync(true));

Getting a value safely:

Task<float> GetPotentialTask = comm.ClientConnection.Run<float>(new Task<float>(() =>

{ return comm.Potential; }));

GetPotentialTask.Wait();
float potential = GetPotentialTask.Result;

or when connected to a device asynchronously

float potential = comm.ClientConnection.RunAsync<float>(() =>

comm.GetPotentialAsync());

 21

6 Data analysis and manipulation using the simplified

wrapper

This chapter covers how data can be retrieved from a measurement and how to manipulate and analyze

the data. This is also detailed in the data, EIS fit and peak detect examples.

6.1 Obtaining the measured values

When a measurement is started by calling the psCommSimpleWinforms.Measure method a reference to

the instance of that SimpleMeasurement class is returned. The SimpleMeasurement class contains

references to instances of the SimpleCurve class in the SimpleMeasurement.SimpleCurveCollection

property, this class is used to analyze and manipulate the data. New instances of the SimpleCurve class

can be generated by calling the SimpleMeasurement.NewSimpleCurve method, this method will generate

new SimpleCurves based on the available DataArrayTypes in the instance SimpleMeasurement (In the

case of a Cyclic Voltammetry or Mux measurements multiple SimpleCurves can be generated). The

SimpleMeasurement.AvailableDataTypes property contains a list of the available DataArrayTypes in the

measurement. In the case you would like to plot a different SimpleCurve than the default one it is possible

to call the SimpleMeasurement.NewSimpleCurve method directly after it has started to generate another

SimpleCurve with different units/values.

List<SimpleCurve> chargeCurves =

simpleMeasurement.NewSimpleCurve(PalmSens.Data.DataArrayType.Time,

PalmSens.Data.DataArrayType.Charge, "Charge/Time"); //Get Charge over Time curves

To access the raw values in the form of an array of doubles use either the SimpleCurve.XAxisValues or

the SimpleCurve.YAxisValues properties.

double[] xValues = simpleCurve.XAxisValues;

double firstYValue = simpleCurve.YAxisValue(0); //Get value of the Y Axis a specified

index

6.2 Smoothing/Filtering

To smooth a SimpleCurve call one of the SimpleCurve.Smooth methods. These methods use the

Savitsky-Golay filter. The arguments can be either the SmoothLevel enumerator or an int specifying the

window size, i.e. a window of 4 will filter based on the 4 adjacent points in both directions.

SimpleCurve smoothedCurve = simpleCurve.Smooth(SmoothLevel.Medium);

SimpleCurve smoothedCurve2 = simpleCurve.Smooth(25); //Smooth using the specified

window size

6.3 Baseline Subtraction

A baseline correction can be performed by subtracting the SimpleCurve of a baseline measurement from

your SimpleCurve or by determining the moving average baseline of the SimpleCurve by calling

SimpleCurve.MovingAverageBaseline. To subtract one curve from another call SimpleCurve.Subtract.on

the SimpleCurve you would like to subtract the other curve from which must be passed on as the

argument.

SimpleCurve movingAverageBaseline = simpleCurve.MovingAverageBaseline(); //Get the

moving average baseline curve

SimpleCurve baselineSubtractedCurve = simpleCurve.Subtract(movingAverageBaseline);
//Get the simple curve with the subtracted baseline

22

6.4 Basic operations

The SimpleCurve class supports other basic operations such as:

▪ Addition; SimpleCurve.Add()

▪ Subtraction; SimpleCurve.Subtract()

▪ Multiplication; SimpleCurve.Multiply()

▪ Exponentiation; SimpleCurve.Exponentiate()

▪ Differentiation; SimpleCurve.Differentiate()

▪ Integration; SimpleCurve.Integrate()

▪ Base 10 Logarithm; SimpleCurve.Log10()

▪ Average; SimpleCurve.Average()

▪ Sum; SimpleCurve.Sum()

▪ Minimum; SimpleCurve.Minimum()

▪ Maximum; SimpleCurve.Maximum()

6.5 Peak and level detection

The SimpleCurve class contains functions for detecting peaks and levels using our algorithms.

There are three peak detection algorithms; the default algorithm detects peaks using the curve’s
derivative, the shoulder algorithm can detect peaks that are on a slope and missed by the default

algorithm, and the LSV/CV algorithm is specifically designed for detecting peaks in Linear Sweep and

Cyclic Voltammetry. The detected peaks are added to SimpleCurve.Peaks, an IEnumerable collection of

the Peak interface. The Peak interface describes the properties of the peak (i.e. the peak potential,

current, height, width, etc.). Examples of the peak detection are also provided in the PSSDKDataExample

and the PSSDKPlotPeakDetectionExample projects.

activeSimpleCurve.DetectPeaks(0.01, 0.05, true, false); //Detect peaks with a minimum

width of 0.01V, a minimum height of 0.05µA, discard any existing peaks, using the

default algorithm
await activeSimpleCurve.DetectPeaksAsync(0.01, 0.05, true, PeakTypes.LSVCV); //Detect

peaks with a minimum width of 0.01V, a minimum height of 0.05µA, discard any existing

peaks, using the Linear Sweep / Cyclic Voltammetry algorithm

//Get peak properties from the first peak

double peakHeight = activeSimpleCurve.Peaks[0].PeakValue;
double peakPotential = activeSimpleCurve.Peaks[0].PeakX;

Level detection works similar to peak detection, except that the results are stored in SimpleCurve.Levels,

an IEnumerable collection of the Level class.

await activeSimpleCurve.DetectLevelsAsync(0.5,0.05,true); //Detect levels with a

minimum width of 0.5s, a minimum height of 0.05µA, discard any existing levels

//Get level properties from the first level

double levelBegin = activeSimpleCurve.Levels[0].LeftX;
double levelEnd = activeSimpleCurve.Levels[0].RightX;

double levelCurrent = activeSimpleCurve.Levels[0].LevelY;

 23

6.6 Equivalent circuit fitting

The SimpleCurve.FitEquivalentCircuit function allows you to fit an equivalent circuit model on your data.

The simplest way to fit a circuit using the default fit settings is using the following version of the

FitEquivalentCircuit function:

FitResult fitResult = await activeSimpleCurve.FitEquivalentCircuit("R(RC)", new

double[] {

100, //The initial value for the solution resistance (series resistor)
8000, //The initial value for the charge transfer resistance (parallel resistor)

1e-8 //The initial value for the double layer capacitance (parallel capacitor)

}); //Fit a Randles circuit using the specified inital values and default fit options

//Get fit results

double solutionResistance = fitResult.FinalParameters[0];

double chargeTransferResistance = fitResult.FinalParameters[1];

double doubleLayerCapacitance = fitResult.FinalParameters[2];

To change the default fit options use the following function in combination with the

CircuitModel and FitOptionsCircuit classes.

//Change model parameters
CircuitModel circuitModel = new CircuitModel();

circuitModel.SetEISdata(_activeMeasurement.Measurement.EISdata[0]); //Sets reference

to measured data
circuitModel.SetCircuit("R(RC)"); //Sets the circuit defined in the CDC code string,

in this case a Randles circuit

//Change bounds and initial value of the solution resistance in the Randles circuit

Parameter p = circuitModel.InitialParameters[0];

p.MaxValue = 1e6; //Set 1e6 Ω as the upper bound
p.MinValue = 1e4; //Set 1e4 Ω as the lower bound
p.Value = 1e5; //Set 1e5 Ω as the initial value

//Override default Fit Options
FitOptionsCircuit fitOptions = new FitOptionsCircuit();

fitOptions.Model = circuitModel; //Specift model to fit

fitOptions.RawData = _activeMeasurement.Measurement.EISdata[0]; //Sets reference to
measured data

fitOptions.MaxIterations = 1000; //The maximum number of iterations, 500 by default

fitOptions.MinimumDeltaErrorTerm = 1e-12; //The minimum delta in the error term (sum
of squares difference between model and data), default is 1e-9

FitResult fitResult = await activeSimpleCurve.FitEquivalentCircuit(circuitModel,

fitOptions); //Fit the circuit defined in the CircuitModel and the options specified
in the FitOptions

//Get fit results
double solutionResistance = fitResult.FinalParameters[0];

double chargeTransferResistance = fitResult.FinalParameters[1];

double doubleLayerCapacitance = fitResult.FinalParameters[2];

The PSSDKPlotEISFit example projects also demonstrate how to use the equivalent circuit fitting.

24

7 Appendix A: Parameters for each technique

All applicable parameters for each technique can be found here. For the inheritance hierarchy of the the

techniques, see section 3 in this document. See section ‘Available techniques’ in the PSTrace manual for
more information about the techniques.

Each technique is identified by a specific integer value. This integer value can be used to create a class

derived from the corresponding technique, as follows:

PalmSens.Method.FromTechniqueNumber(integervalue)

The integer values are indicated in this appendix inside the brackets [] following each technique name.

The techniques are also directly available from the PalmSens.Techniques namespace.

Please refer to the PSTrace manual for explanations and expected values for each parameter.

7.1 Common properties

Property Description Type

Technique The technique number used in the firmware System.Int

Notes Some user notes for use with this method System.String

StandbyPotential Standby Potential (for use with cell on after

measurement)

System.Float

StandbyTime Standby time (for use with cell on after

measurement)

System.Float

CellOnAfterMeasurement Enable/disable cell after measurement System.Boolean

MinPeakHeight Determines the minimum peak height in µA.

Peaks lower than this value are neglected.

System.Float

MinPeakWidth The minimum peak width, in the unit of the

curves X axis. Peaks narrower than this value

are neglected.

System.Float

SmoothLevel The smoothlevel to be used.

-1 = none

0 = no smooth (spike rejection only)

1 = 5 points

2 = 9 points

3 = 15 points

4 = 25 points

System.Int

Ranging Ranging information, settings defining the

minimum/maximum/starting current range

PalmSens.Method.Ranging

 25

7.2 Pretreatment settings

The following properties specify the measurements pretreatment settings:

Property Description Type

ConditioningPotential Conditioning potential in volt System.Float

ConditioningTime Conditioning duration in seconds System.Float

DepositionPotential Deposition potential in volt System.Float

DepositionTime Deposition duration in seconds System.Float

EquilibrationTime Equilibration duration in seconds. BeginPotential is applied

during equilibration and the device switches to the appropriate

current range

System.Float

7.3 Linear Sweep Voltammetry (LSV) [0]

Class: Palmsens.Techniques.LinearSweep

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value of

E step since the data acquisition rate is limited by the connected

instrument.

System.Float

7.4 Differential Pulse Voltammetry (DPV) [1]

Class: Palmsens.Techniques.DifferentialPulse

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value of

E step since the data acquisition rate is limited by the connected

instrument.

System.Float

PulsePotential Pulse potential System.Float

PulseTime The pulse time System.Float

7.5 Square Wave Voltammetry (SWV) [2]

Class: Palmsens.Techniques.SquareWave

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

PulseAmplitude Amplitude of square wave pulse. Values are half peak-to-peak. System.Float

Frequency The frequency of the square wave System.Float

26

7.6 Normal Pulse Voltammetry (NPV) [3]

Class: Palmsens.Techniques.NormalPulse

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value of

E step since the data acquisition rate is limited by the connected

instrument.

System.Float

PulseTime The pulse time System.Float

7.7 AC Voltammetry (ACV) [4]

Class: Palmsens.Techniques.ACVoltammetry

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

SineWaveAmplitude Amplitude of sine wave. Values are RMS System.Float

Frequency The frequency of the AC signal System.Float

7.8 Cyclic Voltammetry (CV) [5]

Class: Palmsens.Techniques.CyclicVoltammetry

Property Description Type

BeginPotential Potential where scan starts and stops. System.Float

Vtx1Potential First potential where direction reverses. System.Float

Vtx2Potential Second potential where direction reverses. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value of

E step since the data acquisition rate is limited by the connected

instrument.

System.Float

nScans The number of repetitions for this scan System.Float

7.8.1 Fast Cyclic Voltammetry Scans

Class: Palmsens.Techniques.FastCyclicVoltammetry

Outdated class. PalmSens 3 and 4 only. CV’s with sampling over 5000 data points per second, use the

regular Palmsens.Techniques.CyclicVoltammetry() constructor instead.

 27

7.9 Chronopotentiometric Stripping (SCP) [6]

Class: PalmSens.Techniques.ChronoPotStripping

Property Description Type

EndPotential Potential where measurement stops. System.Float

MeasurementTime The maximum measurement time. This value should always

exceed the required measurement time. It only limits the time

of the measurement. When the potential response is

erroneously and E end is not found within this time, the

measurement is aborted.

System.Float

AppliedCurrentRange The applied current range PalmSens.

CurrentRange

Istrip If specified as 0, the method is called chemical stripping

otherwise it is constant current stripping. The current is

expressed in the applied current range.

System.Float

7.10 Chronoamperometry (CA) [7]

Class: PalmSens.Techniques.AmperometricDetection

Property Description Type

Potential Potential during measurement. System.Float

IntervalTime Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

7.11 Pulsed Amperometric Detection (PAD) [8]

Class: PalmSens.Techniques.PulsedAmpDetection

Property Description Type

Potential The dc or base potential. System.Float

PulsePotentialAD Potential in pulse. Note that this value is not relative to

dc/base potential, given above.

System.Float

PulseTime The pulse time. System.Float

tMode DC: I(dc) measurement is performed at

potential E

pulse: I(pulse) measurement is performed at

 potential E pulse

differential: I(dif) measurement is I(pulse) - I(dc)

PalmSens.Techniques.

PulsedAmpDetection.

enumMode

IntervalTime Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

7.12 Fast Amperometry (FAM) [9]

Class: PalmSens.Techniques.FastAmperometry

Property Description Type

EqPotentialFA Equilibration potential at which the measurement

starts.

System.Float

Potential Potential during measurement. System.Float

IntervalTimeF Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

28

7.13 Chronopotentiometry (CP) [10]

Class: PalmSens.Techniques.Potentiometry

Property Description Type

Current The current to apply. The unit of the value is the applied

current range. So if 10 uA is the applied current range and 1.5

is given as value, the applied current will be 15 uA.

System.Float

AppliedCurrentRange The applied current range. PalmSens.

CurrentRange

RunTime Total run time of scan. System.Float

IntervalTime Time between two potential samples. System.Float

7.13.1 Open Circuit Potentiometry (OCP)

Class: PalmSens.Techniques.OpenCircuitPotentiometry

The same as setting the Current to 0.

Property Description Type

RunTime Total run time of scan. System.Float

IntervalTime Time between two potential samples. System.Float

7.14 Multiple Pulse Amperometry (MPAD) [11]

Class: PalmSens.Techniques.MultiplePulseAmperometry

Property Description Type

E1 First potential level in which the current is recorded System.Float

E2 Second applied potential level System.Float

E3 Third applied potential level System.Float

t1 The duration of the first applied potential System.Float

t2 The duration of the second applied potential System.Float

t3 The duration of the third applied potential System.Float

RunTime Total run time of scan. System.Float

7.15 Electrochemical Impedance Spectroscopy (EIS)

Class: PalmSens.Techniques.ImpedimetricMethod

The most common properties are described first. These are used for a typical EIS measurement, a scan

over a specified range of frequencies (i.e. using the default properties ScanType = ImpedimetricMethod.

enumScanType.FixedPotential and FreqType = ImpedimetricMethod.enumFrequencyType.Scan). The

additional properties used for a TimeScan and a PotentialScan are detailed separately in next sections.

Property Description Type

ScanType Scan type specifies whether a single or multiple frequency

scans are performed. When set to FixedPotential a single

scan will be performed, this is the recommended setting.

The TimeScan and PotentialScan are not fully supported

in the SDK, we highly recommend you to implement

yourself. A TimeScan performs repeated scans at a given

time interval within a specified time range. A PotentialScan

performs scans where the DC Potential of the applied sine

is incremented within a specified range. A PotentialScan

should not be performed versus the OCP.

ImpedimetricMethod.

enumScanType

Potential The DC potential of the applied sine System.Float

 29

Eac The amplitude of the applied sine in RMS (Root Mean

Square)

System.Float

FreqType Frequency type specifies whether to perform a scan on a

range of frequencies or to measure a single frequency.

The latter option can be used in combination with a

TimeScan or a PotentialScan.

ImpedimetricMethod.

enumFrequencyType

MaxFrequency The highest frequency in the scan, also the frequency at

which the measurement is started

System.Float

MinFrequency The lowest frequency in the scan System.Float

nFrequencies The number of frequencies included in the scan System.Int

SamplingTime Each measurement point of the impedance spectrum is

performed during the period specified by SamplingTime.

This means that the number of measured sine waves is

equal to SamplingTime * frequency. If this value is less

than 1 sine wave, the sampling is extended to 1 /

frequency. So for a measurement at a frequency, at least

one complete sine wave is measured.

Reasonable values for the sampling are in the range of 0.1

to 1 s.

System.Float

MaxEqTime The impedance measurement requires a stationary state.

This means that before the actual measurement starts, the

sine wave is applied during MaxEqTime only to reach the

stationary state.

The maximum number of equilibration sine waves is

however 5. The minimum number of equilibration sines is

set to 1, but for very low frequencies, this time is limited by

MaxEqTime. The maximum time to wait for stationary

state is determined by the value of this parameter. A

reasonable value might be 5 seconds. In this case this

parameter is only relevant when the lowest frequency is

less than 1/ 5 s so 0.2 Hz.

System.Float

7.15.1 Time Scan

In a Time Scan impedance spectroscopy measurements are repeated for a specific amount of time at a

specific interval. The SDK does not support this feature fully, we recommend you to design your own

implementation for this that suits your demands.

Property Description Type

RunTime RunTime is not the total time of the measurement, but the

time in which a measurement iteration can be started. If a

frequency scan takes 18 seconds and is measured at an

interval of 19 seconds for a RunTime of 40 seconds three

iterations will be performed.

System.Float

IntervalTime IntervalTime specifies the interval at which a measurement

iteration should be performed, however if a measurement

iteration takes longer than the interval time the next

measurement will not be triggered until after it has been

completed.

System.Float

30

7.15.2 Potential Scan

In a Potential Scan impedance spectroscopy measurements are repeated over a range of DC potential

values. The SDK does not support this feature fully, we recommend you to design your own

implementation for this that suits your demands.

Property Description Type

BeginPotential The DC potential of the applied sine wave to start the series

of iterative measurements at.

System.Float

EndPotential The DC potential of the applied sine wave at which the series

of iterative measurements ends.

System.Float

StepPotential The size of DC potential step to iterate with. System.Float

7.16 Recording extra values (BiPot, Aux, CE Potential…)

The PalmSens.Method.ExtraValueMsk property allows you to record an additional value during your

measurement. Not all techniques support recording extra values, the SupportsAuxInput and

SupportsBipot properties are used to indicate whether a technique supports the recording of these

values. The default value for PalmSens.Method.ExtraValueMsk is PalmSens.ExtraValueMask.None.

• None, no extra value recorded (default)

• Current

• Potential

• WE2, record BiPot readings (The behavior of the second working electrode is defined with

the method’s BipotModePS property. EnumPalmSensBipotMode.Constant sets it to a fixed

potential and EnumPalmSensBipotMode.Offset sets it to an offset of the primary working

electrode. The value in Volt of the fixed or offset potential is defined with the method’s
BiPotPotential property.)

• AuxInput

• Reverse, record reverse current as used by Square Wave Voltammetry

• PolyStatWE, not supported in the PalmSens SDK

• DCcurrent, record the DC current as used with AC Voltammetry

• CEPotential, PalmSens 4 only

The PSSDKBiPotAuxExample example project demonstrates how to record extra values.

7.17 Multiplexer

The PalmSens.Method class is also used to specify the multiplexer settings for sequential and alternating

measurements. Alternating multiplexer measurements restricted to the chronoamperometry and

chronopotentiometry techniques.

The enumerator property PalmSens.Method.MuxMethod defines the type multiplexer measurement.

methodCA.MuxMethod = MuxMethod.None; //Default setting, no multiplexer
methodCA.MuxMethod = MuxMethod.Alternatingly;

methodCA.MuxMethod = MuxMethod.Sequentially;

//The channels on which to measure are specified in a boolean array
PalmSens.Method.UseMuxChannel: methodCA.UseMuxChannel = new bool[] { true, true,

false, false, false, false, false, true };

The code above will perform a measurement on the first two and last channels of an 8-channel

multiplexer. For a 16-channel multiplexer you would also need to assign true or false to the last 8

channels.

 31

Alternating multiplexer measurement can only measure on successive channels and must start with the

first channel (i.e. it is possible to alternatingly measure on channels 1 through 4 but it is not possible to

alternatingly measure on channel 1, 3 and 5). The multiplexer functionality is demonstrated in the

PSSDKMultiplexerExample project.

7.17.1 Multiplexer settings

When using a MUX8-R2 multiplexer the multiplexer settings must be set digitally instead of via the

physical switches on the earlier multiplexer models. The type of multiplexer should be specified in the

connected device’s capabilities, when the multiplexer is connected before connecting to the software the
capabilities are updated automatically. Otherwise, when using the MUX8-R2 the

PalmSens.Devices.DeviceCapabilities.MuxType should be set to PalmSens.Comm.MuxType.Protocol

manually or by calling PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfo,

PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfoAsync when connected

asynchronously.

For the MUX8-R2 the settings for a measurement are set in PalmSens.Method.MuxSett property with an

instance of the PalmSens.Method.MuxSettings class. For manual control these settings can be set using

the PalmSens.Comm.ClientConnection.SetMuxSettings function,

PalmSens.Comm.ClientConnection.SetMuxSettingsAsync when connected asynchronously.

method.MuxSett = new Method.MuxSettings(false)

{

CommonCERE = false,
ConnSEWE = false,

ConnectCERE = true,

OCPMode = false,
SwitchBoxOn = false,

UnselWE = Method.MuxSettings.UnselWESetting.FLOAT

};

7.18 Versus OCP

The versus open circuit potential settings (OCP) are defined in the PalmSens.Method.OCPmode,

PalmSens.Method.OCPMaxOCPTime, and PalmSens.Method.OCPStabilityCriterion properties. The

OCPmode is a bitmask specifies which of the following technique dependent properties or combination

thereof will be measured versus the OCP potential:

▪ Linear Sweep Voltammetry:

o BeginPotential = 1

o EndPotential = 2

▪ (Fast) Cyclic Voltammetry

o Vtx1Potential = 1

o Vtx2Potential = 2

o BeginPotential = 4

▪ Chronoamperometry

o Potential = 1

▪ Impedance Spectroscopy (Fixed potential and Time Scan)

o Potential = 1

▪ Impedance Spectroscopy (Potential Scan)

o BeginPotential = 1

o EndPotential = 2

The progress and result of the versus OCP measurement step are reported in the

PalmSens.Comm.MeasureVersusOCP class, which can be obtained by subscribing to the

PalmSens.Comm.CommManager.DeterminingVersusOCP event which is raised when the versus OCP

measurement step is started.

//Defining versus OCP measurement step for a Cyclic Voltammetry measurement

32

_methodCV.OCPmode = 7; //Measure the (Vtx1Potential) 1 + (Vtx2Potential) 2 +

(BeginPotential) 4 = 7 versus the OCP potential

_methodCV.OCPMaxOCPTime = 10; //Sets the maximum time the versus OCP step can take to
10 seconds

_methodCV.OCPStabilityCriterion = 0.02f; //The OCP measurement will stop when the

change in potential over time is less than 0.02mV/s, when set to 0 the OCP measurement
step will always run for the OCPMaxOCPTime

7.19 Properties for EmStat Pico

There are two method parameters specific to the EmStat Pico. The PalmSens.Method.PGStatMode

property sets the mode in which the measurement should be run, low power, high speed or max range.

This mode can be set for all techniques but Electrochemical Impedance Spectroscopy. The second

property is PalmSens.Method.SelectedPotentiostatChannel which let you choose on which channel the

EmStat Pico should run the measurement.

