

Getting started with PalmSens SDK
for WPF

Based on PalmSens SDK v5.9

Last revision: October 7, 2021
© 2021 PalmSens BV
www.palmsens.com

 1

Getting started with PalmSens SDK for WPF

Contents
1 Contents of the PalmSens SDK ... 3

1.1 Example programs .. 4

1.2 Compatible devices and firmware ... 6

2 Using the SDK in your Visual Studio.NET project .. 7

2.1 Add SDK References to the project .. 7

2.2 Add PSCommSimpleWPF or PS user control to your user interface (simplified wrapper only) 7

3 PalmSens.Core.dll .. 9

4 Working with files ... 11

4.1 Loading a method file (.psmethod) ... 11

4.2 Setting up a method .. 11

4.3 Saving a method ... 12

4.4 Loading and saving data ... 12

4.5 Loading data from PalmSens 4 internal storage Error! Bookmark not defined.

5 Connecting and Measuring .. 15

5.1 Connecting to a device.. 15

5.2 Receive idle status readings ... 16

5.3 Manually controlling the device ... 18

5.4 Measuring ... 18

5.5 Disconnecting and disposing the device ... 25

5.6 Possible causes of communication issues.. 25

6 Data analysis and manipulation using the simplified wrapper ... 27

6.1 Obtaining the measured values .. 27

6.2 Smoothing/Filtering ... 27

6.3 Baseline Subtraction ... 27

6.4 Basic operations .. 28

6.5 Peak and level detection ... 28

6.6 Equivalent circuit fitting ... 29

7 Appendix A: Parameters for each technique.. 30

7.1 Common properties ... 30

7.2 Pretreatment settings .. 31

7.3 Linear Sweep Voltammetry (LSV) [0] .. 31

7.4 Differential Pulse Voltammetry (DPV) [1] .. 31

7.5 Square Wave Voltammetry (SWV) [2] .. 31

7.6 Normal Pulse Voltammetry (NPV) [3] ... 32

7.7 AC Voltammetry (ACV) [4] ... 32

7.8 Cyclic Voltammetry (CV) [5] .. 32

7.8.1 Fast Cyclic Voltammetry Scans ... 32

7.9 Chronopotentiometric Stripping (SCP) [6] ... 33

7.10 Chronoamperometry (CA) [7] .. 33

7.11 Pulsed Amperometric Detection (PAD) [8] .. 33

2

Getting started with PalmSens SDK for WPF

7.12 Fast Amperometry (FAM) [9] ... 33

7.13 Chronopotentiometry (CP) [10] ... 34

7.13.1 Open Circuit Potentiometry (OCP) .. 34

7.14 Multiple Pulse Amperometry (MPAD) [11]... 34

7.15 Electrochemical Impedance Spectroscopy (EIS) .. 34

7.15.1 Time Scan .. 35

7.15.2 Potential Scan .. 36

7.16 Recording extra values (BiPot, Aux, CE Potential…) .. 36

7.17 Multiplexer ... 37

7.17.1 Multiplexer settings .. 38

7.18 Versus OCP ... 38

7.19 Properties for EmStat Pico .. 39

 3

Getting started with PalmSens SDK for WPF

1 Contents of the PalmSens SDK

The PalmSens SDK contains the following libraries and projects:

PalmSens.Core.dll & PalmSens.Core.Windows.dll:
These libraries contain the namespaces with all the necessary files for using PalmSens/EmStat

devices in
your software.

▪ PalmSens All necessary classes and functions for performing measurements and
 doing analysis with PalmSens or EmStat.
▪ PalmSens.Comm For Serial, USB or TCP communication with PalmSens or EmStat
▪ PalmSens.DataFiles For saving and loading method and data files
▪ PalmSens.Devices For handling communications and device capabilities
▪ PalmSens.Techniques Contains all measurement techniques for PalmSens and EmStat
▪ PalmSens.Units Contains a collection of units used by these libraries

PalmSens.Core.Windows.BLE.dll
This is an optional library to add Bluetooth Low Energy support to your project (Windows 10 only).

PalmSens.Core.Simplified.csproj & PalmSens.Core.Simplified.WPF.csproj:
These projects contain an open source wrapper for the PalmSens.Core.dll &
PalmSens.Core.Windows.dll. This wrapper gives you quick and easy access to all the basic functions
of the PalmSens/EmStat devices and automatically handles most potential threading issues for you:

▪ Connecting
▪ Manual control of the cell
▪ Running measurements
▪ Accessing and processing measured data
▪ Analyzing and manipulating data

SDKPlot.csproj & SDKPlot.WPF.csproj
These projects contain a simple open source plot control that you can use to plot your measurements
in real-time.

OxyPlot.dll & OxyPlot.Wpf.dll:
These libraries required when using the SDK’s plot based on the open source OxyPlot library,
http://www.oxyplot.org/.

4

Getting started with PalmSens SDK for WPF

1.1 Example programs

The following examples are included. All examples use the simplified wrapper for the PalmSens.Core
libraries, except the Console Example.

Example – Console Example (C#):

Shows how to discover devices, establish a connection and run a measurement using only the
PalmSens.Core.dll & PalmSens.Core.Windows.dll

Example – Basic Example (C#):

Shows how to make a connection and run a measurement, with a minimum amount of code.

Example – Plot Example (C#):

Shows how to make a connection, run a measurement and plot the results.

Example – Data Example (C#):

Shows how to load and measurements and methods from and to *.pssession and *.psmethod
files, and how to smooth data, manipulate data and detect peaks.

Example – Multiplexer Example (C#):

Shows how to make a connection and run a measurement on different multiplexer channels.

Example – Auxilliary/BiPot Example (C#):

Shows how to measure additional data from the auxiliary port or a bipot.

Example – Peak Browser Example (C#):

Shows how to load files and access the parameters of peaks found via the automated peak
detection.

Example – Electrochemical Impedance Spectroscopy Fit Example (C#):

Shows how perform an equivalent circuit analysis on an EIS frequency scan measurement.

Example – Peak Detection Example (C#):

Shows how to perform an advanced peak detection for Linear Sweep Voltammetry and Cyclic
Voltammetry measurements.

Example – Internal Storage (C#):

Shows how to browse and load contents from the internal storage of a EmStat Pico Development
Board, Sensit BT, EmStat4 and PalmSens4.

The following examples utilize asynchronous programming to prevent the PalmSens SDK libraries
from blocking the user interface. Please note that when using the async functionalities of the core not
to mix in any synchronous functions that communicate with the PalmSens/EmStat instrument.

Example – Basic Example Async (C#):

Shows how to make a connection and run a measurement, with a minimum amount of code.

Example – Plot Example Async (C#):
Shows how to make a connection, run a measurement and plot the results.

Example – Multi Channel Example (C#):

Shows how to make a connection to multiple channels, run different types of measurements and
plot the results.

Example – Electrochemical Impedance Spectroscopy Fit Example Async (C#):

Shows how perform an equivalent circuit analysis on an EIS frequency scan measurement.

Example – Multi Electrochemical Impedance Spectroscopy Fit Example Async (C#):

Shows how perform multiple equivalent circuit analysis on an EIS frequency scan measurement
simultaneously.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/

 5

Getting started with PalmSens SDK for WPF

Example – Peak Detection Example Async (C#):
Shows how to perform an advanced peak detection for Linear Sweep Voltammetry and Cyclic
Voltammetry measurements.

6

Getting started with PalmSens SDK for WPF

Example – Peak Detection Example Async (C#):
Shows how to perform an advanced peak detection for Linear Sweep Voltammetry and Cyclic
Voltammetry measurements.

1.2 Compatible devices and firmware
 Minimum required

firmware version

EmStat 3.7

EmStat2 7.7

EmStat3 7.7

EmStat3+ 7.7

EmStat4 1.000

EmStat Go 7.7

EmStat Pico 1.301

Sensit Smart 1.301

Sensit BT 1.301

MultiEmStat 7.7

PalmSens3 2.8

PalmSens4 1.7

MultiPalmSens4 1.7

 7

Getting started with PalmSens SDK for WPF

2 Using the SDK in your Visual Studio.NET project

2.1 Add SDK References to the project

Right-click on the References map in your project and click Add Reference:

Reference external libraries (*.dll files) by selecting them via the ‘Browse’ button and reference
project files (*.csproj) by adding them to your solution and referencing the project. (Important! When
using the PalmSens SDK without the simplified wrapper the CoreDependencies must be initiated
before you run a measurement, to do this call the PalmSens.Windows.CoreDependencies.Init()
method one time beforehand)

The PalmSens.Core.dll and PalmSens.Core.Windows.dll libraries should always be referenced. If you
wish to use the simplified wrapper to control your devices the PalmSens.Core.Simplified.csproj and
PalmSens.Core.Simplified.WPF.csproj should be referenced. To use the plot control the
SDKPlot.csproj, SDKPlot.WPF.csproj, OxyPlot.dll, and OxyPlot.WPF.dll should be referenced.

If your project does not build please make sure you are targeting the .NET Framework 4.7.2 or higher,
you are using visual studio 2017 or higher, and that the .NET standard 2.0 is available.

2.2 Add PSCommSimpleWPF or PS user control to your user interface
(simplified wrapper only)

First import the PalmSens.Core.Simplified.csproj and
PalmSens.Core.Simplified.WPF.csproj into your solution and
build the PalmSens.Core.Simplified.WPF project. Then
reference these projects in your project. Next, go to the designer
of your Main Form and look for the PSCommSimpleWPF user
control in your toolbox. Drag and drop this component on top of
your Window. If you would like to develop for a multi channel
instrument use the PSMultiCommSimpleWPF user control
instead.

Finally, select the PSCommSimpleWPF/
PSMultiCommSimpleWPF user control in your XAML, and go to
the events section of the properties to add the events you require.

8

Getting started with PalmSens SDK for WPF

 9

Getting started with PalmSens SDK for WPF

3 PalmSens.Core.dll

The basis for handling measurements is the PalmSens.Measurement class, or the
PalmSens.Core.Simplified.Data.SimpleMeasurement class when using the simplified wrapper.

The measurement class contains all classes, functions, and parameters necessary for performing a
measurement with a PalmSens or EmStat instrument. It has one method and can contain multiple
curves. Curves are a representation of the data in the measurement used for plotting and analysis.

Measurement

Method
Curve

ArrayList

Curve 1

Curve 2

Curve n

10

Getting started with PalmSens SDK for WPF

The following diagram shows the inheritance structure of the Method classes:

Method

TimeMethod

Amperometric
Detection

Chrono
Amperometry

Fast
Amperometry

Fast
Potentiometry

Impedimetric
Method

MultiplePulse
Amperometry

PulsedAmp
Detection

Potentiometry

MultiStep
Amperometry/
Potentiometry

ScanMethod

Potential
Method

acVoltammetry

Cyclic
Voltammetry

LinearSweep

Pulse

NormalPulse

DifferentialPulse

SquareWave

Chrono
PotStripping

 11

Getting started with PalmSens SDK for WPF

4 Working with files

As of version 5 of the PalmSens SDK and PSTrace measurements and their corresponding methods
are stored in *.pssession files. Methods can be stored separately in *.psmethod files.

The PalmSens SDK is backward compatible with following filetypes:

 vs potential (scan method) Measurement vs time

Method file .pms (before 2012) .pmt (before 2012)

Method file .psmethod (default) .psmethod (default)

Data (single curve) file .pss .pst

Analysis curves file .psd

Multiplexer curves file .mux

4.1 Loading a method file (.psmethod)

In order to use the following examples, make sure the PalmSens.Core.dll and
PalmSens.Core.Windows.dll are added as references in your project. For the examples using the
Simplified Core wrapper the PalmSens.Core.Simplified.csproj and
PalmSens.Core.Simplified.WPF.csproj must also be referenced.

Simplified PalmSens.Core:

using PalmSens;

using PalmSens.Core.Simplified.WPF;

Add these namespaces at the top of the document.

Method method = SimpleLoadSaveFunctions.LoadMethod(filepath);

This method loads a *.psmethod file from the specified file path (i.e. C:\\YourMethod.psmethod).

PalmSens.Core:

using PalmSens;

using PalmSens.Windows;

Add these namespaces at the top of the document.

Method method = LoadSaveHelperFunctions.LoadMethod(filepath);

This method loads a *.psmethod file from the specified file path (i.e. C:\\YourMethod.psmethod).

4.2 Setting up a method

The next example defines a Linear Sweep Voltammetry method with the same parameters shown in
the table on the previous page.

Example:

using PalmSens;

using PalmSens.Techniques;

Add these namespaces at the top of the document.

LinearSweep lsv = new LinearSweep();

12

Getting started with PalmSens SDK for WPF

Instantiate a new Linear Sweep Voltammetry method.

lsv.BeginPotential = -1f;
lsv.EndPotential = 1f;

lsv.StepPotential = 0.01f;

lsv.Scanrate = 1f;

Define the method’s parameters.

lsv.Ranging.StartCurrentRange = new CurrentRange(CurrentRanges.cr1uA);

lsv.Ranging.MaximumCurrentRange = new CurrentRange(CurrentRanges.cr10uA);
lsv.Ranging.MaximumCurrentRange = new CurrentRange(CurrentRanges.cr100pA);

Define the current range settings. The CurrentRange constructor uses the enum
PalmSens.CurrentRanges to specify its range. Older versions of the SDK used an integer to specify its
range:

-1 = 100 pA

 0 = 1 nA
 1 = 10 nA

 2 = 100 nA

 3 = 1 uA
 4 = 10 uA

 5 = 100 uA

 6 = 1 mA

 7 = 10 mA
 8 = 100 mA

4.3 Saving a method

To save the Linear Sweep Voltammetry method with the parameters as defined in the previous
example, the following examples can be used:

Simplified PalmSens.Core:

using PalmSens;

using PalmSens.Core.Simplified.WPF;

Add these namespaces at the top of the document.

SimpleLoadSaveFunctions.SaveMethod(lsv, filepath);

This saves the previously defined Linear Sweep Voltammetry method (lsv) to a *.psmethod file
specified in the file path (i.e. C:\\YourMethod.psmethod).

PalmSens.Core:

using PalmSens;
using PalmSens.Windows;

Add these namespaces at the top of the document.

LoadSaveHelperFunctions.SaveMethod(lsv, filepath);

This saves the previously defined Linear Sweep Voltammetry method (lsv) to a *.psmethod file
specified in the file path (i.e. C:\\YourMethod.psmethod).

4.4 Loading and saving data

 13

Getting started with PalmSens SDK for WPF

Data from measurements can be loaded from and stored to
*.pssession files. This contains a session with one or more
measurements containing its respective method and curves.

Loading measurements from *.pssession file a is done by the
following code:

Simplified PalmSens.Core:
The simplified wrapper for the PalmSens.Core libraries uses
the SimpleMeasurement and SimpleCurve classes from the
PalmSens.Core.Simplified.Data namespace instead of the PalmSens.Measurement,
PalmSens.Plottables.Curve and PalmSens.Plottables.EISData classes. The SimpleMeasurement
and SimpleCurve classes make it easier to perform basic functions such as:

• Creating a curve with different units from a measurement (for example a curve with charge
over time).

• Finding peaks in a curve.

• Determining the moving average baseline of a curve.

• Performing basic operations on a curve (Addition, Subtraction, Multiplication, Log10,
Differentiation, Integration).

using PalmSens;

using PalmSens.Core.Simplified.Data;
using PalmSens.Core.Simplified.WPF;

Add these namespaces at the top of the document.

SimpleLoadSaveFunctions.SaveMeasurement(lsv, filepath);

This saves a SimpleMeasurement to a *.pssession file specified in the file path (i.e.
C:\\YourData.pssession).

PalmSens.Core:

using PalmSens;

using PalmSens.Data;

using PalmSens.Windows;

Add these namespaces at the top of the document.

SessionManager session = new SessionManager();
session.AddMeasurement(measurement);

LoadSaveHelperFunctions.SaveSessionFile(filepath, session);

This saves a measurement (PalmSens.Measurement class) to a *.pssession file specified in the
filepath (i.e. C:\\YourData.pssession).

14

Getting started with PalmSens SDK for WPF

4.5 Loading data from internal storage

When connected to a PalmSens4, EmStat4, Sensit BT or EmStat Pico Development Board it is
possible to list and retrieve the measurements stored on its internal storage. The documentation on
Connecting explains how to connect to a device and create an instance of a CommManager.

Simplified PalmSens.Core:

using PalmSens;

using PalmSens.Data;

using PalmSens.Core.Simplified.InternalStorage;

IInternalStorageFolder folder = psCommSimpleWPF.GetInternalStorageBrowser().GetRoot();

This line will return the root folder of the device’s internal storage. The IInternalStorageFolder interface

allows you to list subfolders and any files (measurements) located in that folder.

IReadOnlyList<IInternalStorageFolder> subFolders = folder.GetSubFolders();

IReadOnlyList<IInternalStorageFile> files = folder.GetFiles();

To load a measurement from a IInternalStorageFile use the GetMeasurement method.

SimpleMeasurement measurement = files[0].GetMeasurement();

PalmSens.Core:

using PalmSens;

using PalmSens.Data;

List<DeviceFile> DeviceFiles = comm.ClientConnection.GetDeviceFiles(“”); //Get the
contents from the root directory

The code above lists all the files / folder in the root (“”) of the internal storage. The DeviceFile class
contains information on the Type (File/Folder), Name, Dir (Path) and Size. The EmStat4, Sensit BT
and EmStat Pico Development Board will list the contents of all subfolders. The PalmSens4 can list
the contents of a certain folder pass on the following argument to the GetDeviceFiles method.

List<DeviceFile> DeviceFiles = comm.ClientConnection.GetDeviceFiles(file.Dir + "\\" +

file.Name);

Where the file object refers to a DeviceFile of the type folder.

To get the contents of a DeviceFile of the type measurement use the GetDeviceFile method.

DeviceFile rawData = comm.ClientConnection.GetDeviceFile(file.Dir + "/" + file.Name);

This returns a DeviceFile which has a the unparsed measurement stored in its Content property. This
can be parsed by creating a new instance of the Measurement Class and parsing the data, for more
info please refer to the Internal Storage Example.

 15

Getting started with PalmSens SDK for WPF

5 Connecting and Measuring

The following chapter details how to connect to a device, read data from the device, manually
controlling the potential, run measurements on the device and finally how to properly close a
connection to a device.

5.1 Connecting to a device

The following example shows how to get a list of all available devices and available serial com ports,
and how to connect to one of the discovered devices that.

Simplified PalmSens.Core:

using PalmSens.Devices;

Add this namespace at the top of the document.

Device[] devices = psCommSimpleWPF.ConnectedDevices;

psCommSimpleWPF.Connect(devices[0]);

The first line returns an array of all the connected devices, and the second connects to the first device
in the array of connected devices. When Bluetooth devices should also be discovered set
psCommSimpleWPF.EnableBluetooth = true first.

PalmSens.Core:

using PalmSens.Comm;

using PalmSens.Devices;

using PalmSens.Windows.Devices;

Add these namespaces at the top of the document.

//List of discover functions

List<DeviceList.DiscoverDevicesFunc> discFuncs = new
List<DeviceList.DiscoverDevicesFunc>();

Create an empty list of device discovery functions.

discFuncs.Add(USBCDCDevice.DiscoverDevices); //Default for PS4

discFuncs.Add(FTDIDevice.DiscoverDevices); //Default for Emstat + PS3

discFuncs.Add(SerialPortDevice.DiscoverDevices); //Devices connected via serial port
discFuncs.Add(BluetoothDevice.DiscoverDevices); //Bluetooth devices (PS4, PS3, Emstat

Blue)

Add the discovery functions for the types of devices you would like to discover.

string errors;

Device[] devices = new DeviceList(discFuncs).GetAvailableDevices(out errors);

The GetAvailableDevices() method has an additional optional parameter which must be set to true
when Bluetooth devices should be included in the search.

try
{

device.Open(); //Open the device to allow a connection

 comm = new CommManager(devices[0]); //Connect to the device
}

catch (Exception ex)

{

device.Close();
}

16

Getting started with PalmSens SDK for WPF

To prevent your program from crashing it is recommended to use a try catch sequence when
connecting to a device, this way a device will be closed again when an exception occurs. This code
will connect to the first device in the array of discovered devices.

5.2 Receive idle status readings

The readings of PalmSens can be read continuously using the ReceiveStatus event. The following
information can be found in the status object that is received using this event:

- AuxInput (auxiliary input in V, Status.GetExtraValueAsAuxVoltage())
- Current (in uA, Status.CurrentReading.Value or Status.CurrentReading.ValueInRange)
- Current2 (in uA, in case a BiPot is used, Status.GetExtraValueAsBiPotCurrent())
- Noise (Status.Noise)
- CurrentRange (the current range in use at the moment,

Status.CurrentReading.CurrentRange)
- CurrentStatus (as PalmSens.Comm.ReadingStatus is ok, underload or overload,

Status.CurrentReading.ReadingStatus)
- Potential (measured potential, Status.PotentialReading.Value)
- ReverseCurrent (the reverse current for SquareWave, Status.ExtraValue)

Async functionality

When using the async commands without the simplified core wrappers you will need

to initiate the synchronization context remover, it is recommended to set the argument

one lower than the amount of logical processor cores the CPU has unless it has a single

core, for example:

var nCores = Environment.ProcessorCount;
SynchronizationContextRemover.Init(nCores > 1 ? nCores - 1 : 1);

Bluetooth

Discovery of Bluetooth devices is disabled by default, it can be enabled by setting the

EnableBluetooth proprety to true.

psCommSimpleWPF.EnableBluetooth = true;

To be able to use Bluetooth in your project you should reference the 32.Feet.NET

NuGet package in your project (https://www.nuget.org/packages/32feet.NET/).

Bluetooth Classic works on all supported platforms (Windows 7 SP1, Windows 8.1 and

Windows 10).

Bluetooth Low energy only works on Windows 10. To enable Bluetooth Low Energy

you should add references to the PalmSens.Core.Windows.BLE.dll library (included

in the PSLibraries folder) in your project and the PalmSens.Core.Simplified.WPF

project. Finally, you will also need to respectively uncomment the following lines in the

ScanDevices and the ScanDevicesAsync methods of the DeviceHandler class in the

PalmSens.Core.Simplified.WPF project.

discFuncs.Add(BLEDevice.DiscoverDevices);

discFuncs.Add(BLEDevice.DiscoverDevicesAsync());

https://www.nuget.org/packages/32feet.NET/

 17

Getting started with PalmSens SDK for WPF

- PretreatmentPhaseStatus (None, Conditioning, Depositing or Equilibrating,
Status.PretreatmentPhase)

- VoltageStatus (as PalmSens.Comm.ReadingStatus is ok, underload or overload,
Status.PotentialReading.ReadingStatus)

Simplified PalmSens.Core:

psCommSimpleWPF.ReceiveStatus += PsCommSimpleWPF_ReceiveStatus;

Either subscribe to the ReceiveStatus event of the
psCommSimpleWPF component via the designer or
programmatically. It is not required to be connected to a device first.

private void psCommSimpleWPF_ReceiveStatus(object sender,
PalmSens.Comm.StatusEventArgs e)

{

Status status = e.GetStatus();
}

The status is obtained from the event’s StatusEventArgs.

PalmSens.Core:

comm.ReceiveStatus += Comm_ReceiveStatus;

To get the device’s status updates subscribe to the CommManager’s ReceiveStatus event after
connecting to a device. (comm is a reference to the instance of the CommManager created when
connecting to a device).

private void Comm_ReceiveStatus(object sender, StatusEventArgs e)

{

Status status = e.GetStatus();
}

The status is obtained from the event’s StatusEventArgs.

18

Getting started with PalmSens SDK for WPF

5.3 Manually controlling the device

Depending on your device’s capabilities it can be used to set a potential/current and to switch current
ranges. The potential can be set manually in potentiostatic mode and the current can be set in
galvanostatic mode. The following examples show how to manually set a potential.

Simplfied PalmSens.Core:

psCommSimpleWPF.SetCellPotential(1f);

psCommSimpleWPF.TurnCellOn();

The psCommSimpleWPF component must be connected to a device before you can set its potential
and control the cell. To turn the cell off call psCommSimpleWPF.TurnCellOff().

PalmSens.Core:

comm.Potential = 1f;
comm.CellOn = true;

The device can be controlled using the CommManager that was created when connecting to the
device. When the cell is off no potential will be set. (comm is a reference to the instance of the
CommManager created when connecting to a device).

5.4 Measuring

Starting a measurement is done by sending method parameters to a PalmSens/EmStat device. Events
are raised when a measurement has been started/ended, when a new curve/scan is started/finished,
and when new data is received during a measurement.

Simplified PalmSens.Core:

using PalmSens.Core.Simplified.Data;

Add these namespaces at the top of the document.

psCommSimpleWPF.MeasurementStarted += PsCommSimpleWPF_MeasurementStarted; //Raised

when a measurement begins

psCommSimpleWPF.MeasurementEnded += PsCommSimpleWPF_MeasurementEnded; //Raised when a

measurement is ended

psCommSimpleWPF.SimpleCurveStartReceivingData +=

PsCommSimpleWPF_SimpleCurveStartReceivingData; //Raised when a new SimpleCurve

instance starts receiving datapoints, returns a reference to the active SimpleCurve
instance

Device Capabilities

The capabilities of a connected device can either accessed via the

CommManager.Capabilities or the psCommSimpleWPF.Capabilities property. The

DeviceCapabilities contains properties such as its maximum potential, supported

current ranges and support for specific features (galvanostat/impedance/bipot). The

DeviceCapabilities can also be used to determine whether a certain method is

compatible with a device using either method.Validate(DeviceCapabilities) or

psCommSimpleWPF.ValidateMethod(method).

 19

Getting started with PalmSens SDK for WPF

Subscribing to these events informs you on the status of a measurement and gives you references to
the active SimpleCurve instances. (psCommSimpleWPF is a reference to the instance of the
psCommSimpleWPF component in the Form).

SimpleMeasurement activeSimpleMeasurement = psCommSimpleWPF.Measure(method);

This line starts the measurement described in the instance of the method class. It returns a reference
to the instance of the SimpleMeasurement, in the case of a connection error or invalid method
parameters it returns null. Optionally, when using a multiplexer the channel can be specified as an
integer, for example psCommSimpleWPF.Measure (method,2). (method is a reference to an
instance of the PalmSens.Method class, methods can be found in the namespace
PalmSens.Tecnhniques more information on methods and their parameters is available in chapter 7).

SimpleCurve _activeSimpleCurve;

private void PsCommSimpleWPF_SimpleCurveStartReceivingData(object sender, SimpleCurve

activeSimpleCurve)
{

_activeSimpleCurve = activeSimpleCurve;

 _activeSimpleCurve.NewDataAdded += _activeSimpleCurve_NewDataAdded;

 _activeSimpleCurve.CurveFinished += _activeSimpleCurve_CurveFinished;
}

private void _activeSimpleCurve_NewDataAdded(object sender,
PalmSens.Data.ArrayDataAddedEventArgs e)

{

int startIndex = e.StartIndex;
int count = e.Count;

 double[] newData = new double[count];

 (sender as SimpleCurve).YAxisValues.CopyTo(newData, startIndex);

}

private void _activeCurve_Finished(object sender, EventArgs e)

{
_activeSimpleCurve.NewDataAdded -= _activeSimpleCurve_NewDataAdded;

 _activeSimpleCurve.Finished -= _activeSimpleCurve_Finished;

}

This code shows you how to obtain a reference to the instance of the active SimpleCurve currently
receiving data from the SimpleCurveStartReceivingData event. It also shows how to subscribe this
SimpleCurve’s NewDataAdded and CurveFinished events and how these events can be used to
retrieve the values of new data points from the Simple Curve as soon as they are available.

During a measurement the property psCommSimpleWPF.DeviceState property equals either
CommManager.DeviceState.Pretreatment or CommManager.DeviceState.Measurement.

PalmSens.Core:

using PalmSens;

using PalmSens.Comm;

using PalmSens.Plottables;

Add these namespaces at the top of the document.

comm.BeginMeasurement += Comm_BeginMeasurement; //Raised when a measurement begins,

returns a reference to its measurement instance

comm.EndMeasurement += Comm_EndMeasurement; //Raised when a measurement is ended

comm.BeginReceiveCurve += Comm_BeginReceiveCurve; //Raised when a curve instance

begins receiving datapoints, returns a reference to the active curve instance

20

Getting started with PalmSens SDK for WPF

comm.BeginReceiveEISData += Comm_BeginReceiveEISData; //Raised when a EISData instance

begins receiving datapoints, returns a reference to the active EISData instance

Subscribing to these events informs you on the status of a measurement and gives you the references
to the active measurement and curve instances. (comm is a reference to the instance of the
CommManager created when connecting to a device).

comm.Measure(method);

This line starts the measurement described in the instance of the method class. Optionally, when
using a multiplexer the channel can be specified as an integer, for example
comm.Measure(method,2). (method is a reference to an instance of the PalmSens.Method class,
methods can be found in the namespace PalmSens.Techniques more information on methods and
their parameters is available in chapter 7).

Measurement measurement;

private void Comm_BeginMeasurement(object sender, ActiveMeasurement newMeasurement)
{

measurement = newMeasurement;

}

When the BeginMeasurement event is raised it returns a reference to the instance of the current
measurement. Alternatively, this reference can be obtained from the
CommManager.ActiveMeasurement property after the measurement has been started.

Curve _activeCurve;

private void Comm_BeginReceiveCurve(object sender, PalmSens.Plottables.CurveEventArgs

e)
{

_activeCurve = e.GetCurve();

 _activeCurve.NewDataAdded += _activeCurve_NewDataAdded;
 _activeCurve.Finished += _activeCurve_Finished;

}

private void _activeCurve_NewDataAdded(object sender,

PalmSens.Data.ArrayDataAddedEventArgs e)

{

int startIndex = e.StartIndex;
int count = e.Count;

 double[] newData = new double[count];

 (sender as Curve).GetYValues().CopyTo(newData, startIndex);
}

private void _activeCurve_Finished(object sender, EventArgs e)
{

_activeCurve.NewDataAdded -= _activeCurve_NewDataAdded;

 _activeCurve.Finished -= _activeCurve_Finished;

}

 21

Getting started with PalmSens SDK for WPF

This code shows you how to obtain a reference to the instance of the active curve currently receiving
data from the BeginReceiveCurve event. It also shows how to use the active curve’s NewDataAdded
and Finished events to retrieve the values of new data points from the curve as soon as they are
available.

EISData _activeEISData;

private void Comm_BeginReceiveEISData(object sender, PalmSens.Plottables.EISData
eisdata)

{

_activeEISData = eisdata;
_activeEISData.NewDataAdded += _activeEISData_NewDataAdded; //Raised when new

data is added

_activeEISData.NewSubScanAdded += _activeEISData_NewSubScanAdded; //Raised when

a new frequency scan is started

_activeEISData.Finished += _activeEISData_Finished; //Raised when EISData is

finished

}

When performing Impedance Spectroscopy measurements data points are stored in an instance of the
EISData class and these events should be used similarly to those used for other measurements.

During a measurement the property comm.Busy is true.

5.5 MethodSCRIPTTM

The MethodSCRIPTTM scripting language is designed to integrate our OEM potentiostat (modules)
effortlessly in your hardware setup or product.

MethodSCRIPTTM allows developers to program a human-readable script directly into the potentiostat
module by means of a serial (TTL) connection. The simple script language allows for running all
supported electrochemical techniques and makes it easy to combine different measurements and
other tasks.

More script features include:

• Use of variables

• (Nested) loops

• Logging results to an SD card

• Digital I/O for example for waiting for an external trigger

• Reading auxiliary values like pH or temperature

• Going to sleep or hibernate mode

See for more information: www.palmsens.com/methodscript

Mains Frequency

To eliminate noise induced by other electrical appliances it is highly recommended to

set your regional mains frequency (50/60 Hz) in the static property

PalmSens.Method.PowerFreq.

https://www.palmsens.com/methodscript

22

Getting started with PalmSens SDK for WPF

5.5.1 Sandbox Measurements
PSTrace includes an option to make use MethodSCRIPTTM Sandbox to write and run scripts. This is a
great place to test MethodSCRIPTTM measurements to see what the result would be. That script can
then be used in the MethodScriptSandbox technique in the SDK as demonstrated below.

 23

Getting started with PalmSens SDK for WPF

The following example contains 2 measurements, a LSV (meas_loop_lsv) and a CV

(meas_loop_cv). Custom MethodSCRIPTTM can be run using the MethodScriptSandbox Method

class.

var methodSCRIPT = @"e

var c

var p

set_pgstat_chan 1

set_pgstat_mode 0

set_pgstat_chan 0

set_pgstat_mode 3

set_max_bandwidth 400

set_range_minmax da -1 1

set_range ba 590u

set_autoranging ba 590n 590u

cell_on

meas_loop_lsv p c -500m 500m 10m 1

pck_start

pck_add p

pck_add c

pck_end

endloop

meas_loop_cv p c -500m -1 1 10m 1

pck_start

pck_add p

pck_add c

pck_end

endloop

on_finished:

cell_off

".Replace("\r", ""); // Remove all carriage return characters

var sandbox = new MethodScriptSandbox

{

 MethodScript = methodSCRIPT

};

As seen with the example above, MethodSCRIPTTM allows multiple measurements with a single script
without having to send multiple scripts. The script string text must not contain the default newline
characters (\r\n), these need to be replace just with the line feed or new line character (\n).

Please see section Measuring to see how to run methods. MethodSCRIPTTM must be run on the
appropriate devices. You can check if a device is capable of running method script by casting the
capabilities to MethodScriptDeviceCapabilities.

psCommSimpleWPF.Capabilities is MethodScriptDeviceCapabilities

SandboxMeasurements parse and store the variables sent in pcks. Curves are generated
automatically for each meas_loop that defines a pck with two or more variables, scripts with multiple
meas_loops will generate multiple curves. The first variable in the pck will be set as the x-axis and a
curve is created for each subsequent variable in the pck. Please note that to plot data versus time you
will need to a variable with the time to the pck.

5.5.2 Getter/Setter

The getter/setter allows you to control the IO pins of the devices that allow this, for example with the
EmStat PICO. Here a simple getter/setter example:

Simplified PalmSens.Core:

24

Getting started with PalmSens SDK for WPF

Getter Example:

byte bitMask = 0b10101010; //A bitmask specifying which digital lines to read (0 =

 ignore, 1 = read).

//Synchronous

var result = psCommSimpleWPF.ReadDigitalLine(bitMask);

//Asynchronous

var result = await psCommSimpleWPF.ReadDigitalLineAsync(bitMask);

Setter Example:

byte bitMask = 0b11111111; //A bitmask specifying the output signal of the digital

 lines (0 = low, 1 = high).

var configGPIO = 0b10101010; //A bitmask specifying the the mode of digital lines

(0 = input, 1 = output).

//Synchronous

psCommSimpleWinForms.SetDigitalOutput(bitMask, configGPIO);

//Asynchronous

await psCommSimpleWinForms.SetDigitalOutputAsync(bitMask, configGPIO);

Using MethodSCRIPTTM:
Setter Example:

string script = "e\nset_gpio_cfg 0b11111111 1\nset_gpio 0b10101010i\n\n";

//Synchronous

psCommSimpleWPF.StartSetterMethodScript(script);

//Synchronous

await psCommSimpleWPF.StartSetterMethodScriptAsync(script);

Getter Example:

string script = "e\nvar p\nset_gpio_cfg 0b11111111 0\nget_gpio p\npck_start\npck_a

dd p\npck_end\n\n";

//Synchronous

var result = psCommSimpleWPF.StartGetterMethodScript(script);

//Asynchronous

var result = await psCommSimpleWPF.StartGetterMethodScriptAsync(script);

PalmSens.Core:

Getter Example:

string script = "e\nvar p\nset_gpio_cfg 0b11111111 0\nget_gpio p\npck_start\npck_a

dd p\npck_end\n\n";

//Synchronous

if (Comm.ClientConnection is ClientConnectionMS connMS)

{

 string result = connMS.StartGetterMethodScript(script, timeout);

 return result;

}

//Asynchronous

if (comm.ClientConnection is ClientConnectionMS connMS)

{

 string result = await connMS.StartGetterMethodScriptAsync(script, timeout);

 return result;

}

 25

Getting started with PalmSens SDK for WPF

Setter Example:

string script = "e\nset_gpio_cfg 0b11111111 1\nset_gpio 0b10101010i\n\n";

//Synchronous

if (comm.ClientConnection is ClientConnectionMS connMS)

 connMS.StartSetterMethodScript(script, timeout);

//Asynchronous

if (comm.ClientConnection is ClientConnectionMS connMS)

 await connMS.StartSetterMethodScriptAsync(script, timeout);

5.6 Disconnecting and disposing the device

The com port is automatically closed when the instance of the CommManager is disconnected or
disposed.

Simplified PalmSens.Core:

psCommSimpleWPF.Disconnect(); or psCommSimpleWPF.Dispose();

PalmSens.Core:

comm.ClientConnection.Run(() => comm.Disconnect()).Wait() or comm.Disconnect(); or

comm.Dispose();

The psCommSimpleWPF.Disconnected event is raised when the device is disconnected, this can
be particularly useful when the device was disconnected due to a communication error as the event
also returns the respective exception as an argument in that case.

5.7 Possible causes of communication issues.

Communication issues can occur when certain commands are executed at the same time, i.e. starting
a measurement and triggering a read potential at the same time will result in the device receiving
commands in an incorrect order. These issues typically arise when a timer is used, when using
multiple threads, and when invoking commands in a callback on one on the
psCommSimpleWPF/psMultiCommSimpleWPF events.

When using the simplified core wrapper communication issues are prevented as much as possible.
Using commands to control the device from your psCommSimpleWPF/psMultiCommSimpleWPF
event callbacks is blocked, to prevent communication issues. With the asynchronous methods it is
possible to control your device from one of these callbacks as the command will be delayed and run
after completion of the previous command, however, as it can be run at a later point in time it is
important to check whether all conditions for executing the command are still true. This can be
adjusted in the PSCommSimple.cs or PSMultiCommSimple.cs files in the
PalmSens.Core.Simplified project.

When using the PalmSens.Core directly useful aids to prevent threading issues are the
comm.ClientConnection.Run and comm.ClientConnection.Run<T> methods. These assure the
commands are run on the correct context which prevents communication errors due to multiple
threads communicating with the device simultaneously. When using multiple threads it is highly
recommended to use these helper methods when invoking methods that communicate with the device
(i.e. Measure, Current, Potential, CurrentRange and CellOn) from a different thread.

Setting a value safely:

comm.ClientConnection.Run(() => { comm.CellOn = true; }).Wait();

or when connected to a device asynchronously

await comm.ClientConnection.RunAsync(() => comm.SetCellOnAsync(true));

26

Getting started with PalmSens SDK for WPF

Getting a value safely:

Task<float> GetPotentialTask = comm.ClientConnection.Run<float>(new Task<float>(() =>
{ return comm.Potential; }));

GetPotentialTask.Wait();

float potential = GetPotentialTask.Result;

or when connected to a device asynchronously

float potential = comm.ClientConnection.RunAsync<float>(() =>
comm.GetPotentialAsync());

 27

Getting started with PalmSens SDK for WPF

6 Data analysis and manipulation using the simplified
wrapper

This chapter covers how data can be retrieved from a measurement and how to manipulate and
analyze the data. This is also detailed in the data, EIS fit and peak detect examples.

6.1 Obtaining the measured values

When a measurement is started by calling the psCommSimpleWPF.Measure method a reference to
the instance of that SimpleMeasurement class is returned. The SimpleMeasurement class contains
references to instances of the SimpleCurve class in the
SimpleMeasurement.SimpleCurveCollection property, this class is used to analyze and manipulate
the data. New instances of the SimpleCurve class can be generated by calling the
SimpleMeasurement.NewSimpleCurve method, this method will generate new SimpleCurves
based on the available DataArrayTypes in the instance SimpleMeasurement (In the case of a Cyclic
Voltammetry or Mux measurements multiple SimpleCurves can be generated). The
SimpleMeasurement.AvailableDataTypes property contains a list of the available DataArrayTypes
in the measurement. In the case you would like to plot a different SimpleCurve than the default one it
is possible to call the SimpleMeasurement.NewSimpleCurve method directly after it has started to
generate another SimpleCurve with different units/values.

List<SimpleCurve> chargeCurves =

simpleMeasurement.NewSimpleCurve(PalmSens.Data.DataArrayType.Time,

PalmSens.Data.DataArrayType.Charge, "Charge/Time"); //Get Charge over Time curves

To access the raw values in the form of an array of doubles use either the SimpleCurve.XAxisValues
or the SimpleCurve.YAxisValues properties.

double[] xValues = simpleCurve.XAxisValues;
double firstYValue = simpleCurve.YAxisValue(0); //Get value of the Y Axis a specified

index

6.2 Smoothing/Filtering

To smooth a SimpleCurve call one of the SimpleCurve.Smooth methods. These methods use the
Savitsky-Golay filter. The arguments can be either the SmoothLevel enumerator or an int specifying
the window size, i.e. a window of 4 will filter based on the 4 adjacent points in both directions.

SimpleCurve smoothedCurve = simpleCurve.Smooth(SmoothLevel.Medium);

SimpleCurve smoothedCurve2 = simpleCurve.Smooth(25); //Smooth using the specified

window size

6.3 Baseline Subtraction

A baseline correction can be performed by subtracting the SimpleCurve of a baseline measurement
from your SimpleCurve or by determining the moving average baseline of the SimpleCurve by calling
SimpleCurve.MovingAverageBaseline. To subtract one curve from another call
SimpleCurve.Subtract.on the SimpleCurve you would like to subtract the other curve from which
must be passed on as the argument.

SimpleCurve movingAverageBaseline = simpleCurve.MovingAverageBaseline(); //Get the

moving average baseline curve

SimpleCurve baselineSubtractedCurve = simpleCurve.Subtract(movingAverageBaseline);
//Get the simple curve with the subtracted baseline

28

Getting started with PalmSens SDK for WPF

6.4 Basic operations

The SimpleCurve class supports other basic operations such as:

• Addition; SimpleCurve.Add()

• Subtraction; SimpleCurve.Subtract()

• Multiplication; SimpleCurve.Multiply()

• Exponentiation; SimpleCurve.Exponentiate()

• Differentiation; SimpleCurve.Differentiate()

• Integration; SimpleCurve.Integrate()

• Base 10 Logarithm; SimpleCurve.Log10()

• Average; SimpleCurve.Average()

• Sum; SimpleCurve.Sum()

• Minimum; SimpleCurve.Minimum()

• Maximum; SimpleCurve.Maximum()

6.5 Peak and level detection

The SimpleCurve class contains functions for detecting peaks and levels using our algorithms.

There are three peak detection algorithms; the default algorithm detects peaks using the curve’s
derivative, the shoulder algorithm can detect peaks that are on a slope and missed by the default
algorithm, and the LSV/CV algorithm is specifically designed for detecting peaks in Linear Sweep and
Cyclic Voltammetry. The detected peaks are added to SimpleCurve.Peaks, an IEnumerable
collection of the Peak interface. The Peak interface describes the properties of the peak (i.e. the peak
potential, current, height, width, etc.). Examples of the peak detection are also provided in the
PSSDKDataExample and the PSSDKPlotPeakDetectionExample projects.

activeSimpleCurve.DetectPeaks(0.01, 0.05, true, false); //Detect peaks with a minimum

width of 0.01V, a minimum height of 0.05µA, discard any existing peaks, using the

default algorithm
await activeSimpleCurve.DetectPeaksAsync(0.01, 0.05, true, PeakTypes.LSVCV); //Detect

peaks with a minimum width of 0.01V, a minimum height of 0.05µA, discard any existing

peaks, using the Linear Sweep / Cyclic Voltammetry algorithm

//Get peak properties from the first peak

double peakHeight = activeSimpleCurve.Peaks[0].PeakValue;
double peakPotential = activeSimpleCurve.Peaks[0].PeakX;

Level detection works similar to peak detection, except that the results are stored in
SimpleCurve.Levels, an IEnumerable collection of the Level class.

await activeSimpleCurve.DetectLevelsAsync(0.5,0.05,true); //Detect levels with a

minimum width of 0.5s, a minimum height of 0.05µA, discard any existing levels

//Get level properties from the first level

double levelBegin = activeSimpleCurve.Levels[0].LeftX;

double levelEnd = activeSimpleCurve.Levels[0].RightX;
double levelCurrent = activeSimpleCurve.Levels[0].LevelY;

 29

Getting started with PalmSens SDK for WPF

6.6 Equivalent circuit fitting

The SimpleCurve.FitEquivalentCircuit function allows you to fit an equivalent circuit model on your
data. The simplest way to fit a circuit using the default fit settings is using the following version of the
FitEquivalentCircuit function:

FitResult fitResult = await activeSimpleCurve.FitEquivalentCircuit("R(RC)", new
double[] {

100, //The initial value for the solution resistance (series resistor)

8000, //The initial value for the charge transfer resistance (parallel resistor)
1e-8 //The initial value for the double layer capacitance (parallel capacitor)

}); //Fit a Randles circuit using the specified inital values and default fit options

//Get fit results

double solutionResistance = fitResult.FinalParameters[0];

double chargeTransferResistance = fitResult.FinalParameters[1];

double doubleLayerCapacitance = fitResult.FinalParameters[2];

To change the default fit options use the following function in combination with the

CircuitModel and FitOptionsCircuit classes.

//Change model parameters

CircuitModel circuitModel = new CircuitModel();
circuitModel.SetEISdata(_activeMeasurement.Measurement.EISdata[0]); //Sets reference

to measured data

circuitModel.SetCircuit("R(RC)"); //Sets the circuit defined in the CDC code string,
in this case a Randles circuit

//Change bounds and initial value of the solution resistance in the Randles circuit

Parameter p = circuitModel.InitialParameters[0];
p.MaxValue = 1e6; //Set 1e6 Ω as the upper bound
p.MinValue = 1e4; //Set 1e4 Ω as the lower bound
p.Value = 1e5; //Set 1e5 Ω as the initial value

//Override default Fit Options

FitOptionsCircuit fitOptions = new FitOptionsCircuit();
fitOptions.Model = circuitModel; //Specift model to fit

fitOptions.RawData = _activeMeasurement.Measurement.EISdata[0]; //Sets reference to

measured data

fitOptions.MaxIterations = 1000; //The maximum number of iterations, 500 by default
fitOptions.MinimumDeltaErrorTerm = 1e-12; //The minimum delta in the error term (sum

of squares difference between model and data), default is 1e-9

FitResult fitResult = await activeSimpleCurve.FitEquivalentCircuit(circuitModel,

fitOptions); //Fit the circuit defined in the CircuitModel and the options specified

in the FitOptions

//Get fit results

double solutionResistance = fitResult.FinalParameters[0];

double chargeTransferResistance = fitResult.FinalParameters[1];
double doubleLayerCapacitance = fitResult.FinalParameters[2];

The PSSDKPlotEISFit example projects also demonstrate how to use the equivalent circuit fitting.

30

Getting started with PalmSens SDK for WPF

7 Appendix A: Parameters for each technique

All applicable parameters for each technique can be found here. For the inheritance hierarchy of the
the techniques, see section 3 in this document. See section ‘Available techniques’ in the PSTrace
manual for more information about the techniques.

Each technique is identified by a specific integer value. This integer value can be used to create a
class derived from the corresponding technique, as follows:

PalmSens.Method.FromTechniqueNumber(integervalue)

The integer values are indicated in this appendix inside the brackets [] following each technique
name.

The techniques are also directly available from the PalmSens.Techniques namespace.

Please refer to the PSTrace manual for explanations and expected values for each parameter.

7.1 Common properties

Property Description Type

Technique The technique number used in the
firmware

System.Int

Notes Some user notes for use with this method System.String

StandbyPotential Standby Potential (for use with cell on
after measurement)

System.Float

StandbyTime Standby time (for use with cell on after
measurement)

System.Float

CellOnAfterMeasurement Enable/disable cell after measurement System.Boolean

MinPeakHeight Determines the minimum peak height in
µA. Peaks lower than this value are
neglected.

System.Float

MinPeakWidth The minimum peak width, in the unit of
the curves X axis. Peaks narrower than
this value are neglected.

System.Float

SmoothLevel The smoothlevel to be used.
-1 = none
0 = no smooth (spike rejection only)
1 = 5 points
2 = 9 points
3 = 15 points
4 = 25 points

System.Int

Ranging Ranging information, settings defining the
minimum/maximum/starting current range

PalmSens.Method.Ranging

PowerFreq Adjusts sampling on instrument to
account for mains frequency. It accepts
two values:
50 for 50Hz
60 for 60Hz

System.Int

 31

Getting started with PalmSens SDK for WPF

7.2 Pretreatment settings

The following properties specify the measurements pretreatment settings:

Property Description Type

ConditioningPotential Conditioning potential in volt System.Float

ConditioningTime Conditioning duration in seconds System.Float

DepositionPotential Deposition potential in volt System.Float

DepositionTime Deposition duration in seconds System.Float

EquilibrationTime Equilibration duration in seconds. BeginPotential is applied
during equilibration and the device switches to the
appropriate current range

System.Float

7.3 Linear Sweep Voltammetry (LSV) [0]

Class: Palmsens.Techniques.LinearSweep

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value
of E step since the data acquisition rate is limited by the connected
instrument.

System.Float

7.4 Differential Pulse Voltammetry (DPV) [1]

Class: Palmsens.Techniques.DifferentialPulse

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value
of E step since the data acquisition rate is limited by the connected
instrument.

System.Float

PulsePotential Pulse potential System.Float

PulseTime The pulse time System.Float

7.5 Square Wave Voltammetry (SWV) [2]

Class: Palmsens.Techniques.SquareWave

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

PulseAmplitude Amplitude of square wave pulse. Values are half peak-to-peak. System.Float

Frequency The frequency of the square wave System.Float

32

Getting started with PalmSens SDK for WPF

7.6 Normal Pulse Voltammetry (NPV) [3]

Class: Palmsens.Techniques.NormalPulse

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value
of E step since the data acquisition rate is limited by the connected
instrument.

System.Float

PulseTime The pulse time System.Float

7.7 AC Voltammetry (ACV) [4]

Class: Palmsens.Techniques.ACVoltammetry

Property Description Type

BeginPotential Potential where scan starts. System.Float

EndPotential Potential where measurement stops. System.Float

StepPotential Step potential System.Float

SineWaveAmplitude Amplitude of sine wave. Values are RMS System.Float

Frequency The frequency of the AC signal System.Float

7.8 Cyclic Voltammetry (CV) [5]

Class: Palmsens.Techniques.CyclicVoltammetry

Property Description Type

BeginPotential Potential where scan starts and stops. System.Float

Vtx1Potential First potential where direction reverses. System.Float

Vtx2Potential Second potential where direction reverses. System.Float

StepPotential Step potential System.Float

Scanrate The applied scan rate. The applicable range depends on the value
of E step since the data acquisition rate is limited by the connected
instrument.

System.Float

nScans The number of repetitions for this scan System.Float

7.8.1 Fast Cyclic Voltammetry Scans
Class: Palmsens.Techniques.FastCyclicVoltammetry

Outdated class. PalmSens 3 and 4 only. CV’s with sampling over 5000 data points per second, use
the regular Palmsens.Techniques.CyclicVoltammetry() constructor instead.

 33

Getting started with PalmSens SDK for WPF

7.9 Chronopotentiometric Stripping (SCP) [6]

Class: PalmSens.Techniques.ChronoPotStripping

Property Description Type

EndPotential Potential where measurement stops. System.Float

MeasurementTime The maximum measurement time. This value should
always exceed the required measurement time. It only
limits the time of the measurement. When the potential
response is erroneously and E end is not found within this
time, the measurement is aborted.

System.Float

AppliedCurrentRange The applied current range PalmSens.
CurrentRange

Istrip If specified as 0, the method is called chemical stripping
otherwise it is constant current stripping. The current is
expressed in the applied current range.

System.Float

7.10 Chronoamperometry (CA) [7]

Class: PalmSens.Techniques.AmperometricDetection

Property Description Type

Potential Potential during measurement. System.Float

IntervalTime Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

7.11 Pulsed Amperometric Detection (PAD) [8]

Class: PalmSens.Techniques.PulsedAmpDetection

Property Description Type

Potential The dc or base potential. System.Float

PulsePotentialAD Potential in pulse. Note that this value is not relative
to dc/base potential, given above.

System.Float

PulseTime The pulse time. System.Float

tMode DC: I(dc) measurement is performed at
potential E
pulse: I(pulse) measurement is performed at
 potential E pulse
differential: I(dif) measurement is I(pulse) - I(dc)

PalmSens.Techniques.
PulsedAmpDetection.
enumMode

IntervalTime Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

7.12 Fast Amperometry (FAM) [9]

Class: PalmSens.Techniques.FastAmperometry

Property Description Type

EqPotentialFA Equilibration potential at which the measurement
starts.

System.Float

Potential Potential during measurement. System.Float

IntervalTimeF Time between two current samples. System.Float

RunTime Total run time of scan. System.Float

34

Getting started with PalmSens SDK for WPF

7.13 Chronopotentiometry (CP) [10]

Class: PalmSens.Techniques.Potentiometry

Property Description Type

Current The current to apply. The unit of the value is the applied
current range. So if 10 uA is the applied current range and
1.5 is given as value, the applied current will be 15 uA.

System.Float

AppliedCurrentRange The applied current range. PalmSens.
CurrentRange

RunTime Total run time of scan. System.Float

IntervalTime Time between two potential samples. System.Float

7.13.1 Open Circuit Potentiometry (OCP)
Class: PalmSens.Techniques.OpenCircuitPotentiometry

The same as setting the Current to 0.

Property Description Type

RunTime Total run time of scan. System.Float

IntervalTime Time between two potential samples. System.Float

7.14 Multiple Pulse Amperometry (MPAD) [11]

Class: PalmSens.Techniques.MultiplePulseAmperometry

Property Description Type

E1 First potential level in which the current is recorded System.Float

E2 Second applied potential level System.Float

E3 Third applied potential level System.Float

t1 The duration of the first applied potential System.Float

t2 The duration of the second applied potential System.Float

t3 The duration of the third applied potential System.Float

RunTime Total run time of scan. System.Float

7.15 Electrochemical Impedance Spectroscopy (EIS)

Class: PalmSens.Techniques.ImpedimetricMethod

The most common properties are described first. These are used for a typical EIS measurement, a
scan over a specified range of frequencies (i.e. using the default properties ScanType =
ImpedimetricMethod.
enumScanType.FixedPotential and FreqType =
ImpedimetricMethod.enumFrequencyType.Scan). The additional properties used for a TimeScan
and a PotentialScan are detailed separately in next sections.

Property Description Type

ScanType Scan type specifies whether a single or multiple
frequency scans are performed. When set to
FixedPotential a single scan will be performed, this is
the recommended setting. The TimeScan and
PotentialScan are not fully supported in the SDK, we
highly recommend you to implement yourself. A
TimeScan performs repeated scans at a given time
interval within a specified time range. A PotentialScan
performs scans where the DC Potential of the applied
sine is incremented within a specified range. A
PotentialScan should not be performed versus the OCP.

ImpedimetricMethod.
enumScanType

 35

Getting started with PalmSens SDK for WPF

Potential The DC potential of the applied sine System.Float

Eac The amplitude of the applied sine in RMS (Root Mean
Square)

System.Float

FreqType Frequency type specifies whether to perform a scan on
a range of frequencies or to measure a single frequency.
The latter option can be used in combination with a
TimeScan or a PotentialScan.

ImpedimetricMethod.
enumFrequencyType

MaxFrequency The highest frequency in the scan, also the frequency at
which the measurement is started

System.Float

MinFrequency The lowest frequency in the scan System.Float
nFrequencies The number of frequencies included in the scan System.Int

SamplingTime Each measurement point of the impedance spectrum is
performed during the period specified by SamplingTime.
This means that the number of measured sine waves is
equal to SamplingTime * frequency. If this value is less
than 1 sine wave, the sampling is extended to 1 /
frequency. So for a measurement at a frequency, at
least one complete sine wave is measured.

Reasonable values for the sampling are in the range of
0.1 to 1 s.

System.Float

MaxEqTime The impedance measurement requires a stationary
state. This means that before the actual measurement
starts, the sine wave is applied during MaxEqTime only
to reach the stationary state.

The maximum number of equilibration sine waves is
however 5. The minimum number of equilibration sines
is set to 1, but for very low frequencies, this time is
limited by MaxEqTime. The maximum time to wait for
stationary state is determined by the value of this
parameter. A reasonable value might be 5 seconds. In
this case this parameter is only relevant when the lowest
frequency is less than 1/ 5 s so 0.2 Hz.

System.Float

7.15.1 Time Scan

In a Time Scan impedance spectroscopy measurements are repeated for a specific amount of time at
a specific interval. The SDK does not support this feature fully, we recommend you to design your own
implementation for this that suits your demands.

Property Description Type

RunTime RunTime is not the total time of the measurement, but the
time in which a measurement iteration can be started. If a
frequency scan takes 18 seconds and is measured at an
interval of 19 seconds for a RunTime of 40 seconds three
iterations will be performed.

System.Float

IntervalTime IntervalTime specifies the interval at which a measurement
iteration should be performed, however if a measurement
iteration takes longer than the interval time the next
measurement will not be triggered until after it has been
completed.

System.Float

36

Getting started with PalmSens SDK for WPF

7.15.2 Potential Scan

In a Potential Scan impedance spectroscopy measurements are repeated over a range of DC potential
values. The SDK does not support this feature fully, we recommend you to design your own
implementation for this that suits your demands.

Property Description Type

BeginPotential The DC potential of the applied sine wave to start the series
of iterative measurements at.

System.Float

EndPotential The DC potential of the applied sine wave at which the
series of iterative measurements ends.

System.Float

StepPotential The size of DC potential step to iterate with. System.Float

7.16 Recording extra values (BiPot, Aux, CE Potential…)

The PalmSens.Method.ExtraValueMsk property allows you to record an additional value during your
measurement. Not all techniques support recording extra values, the SupportsAuxInput and
SupportsBipot properties are used to indicate whether a technique supports the recording of these
values. The default value for PalmSens.Method.ExtraValueMsk is
PalmSens.ExtraValueMask.None.

• None, no extra value recorded (default)

• Current

• Potential

• WE2, record BiPot readings (The behavior of the second working electrode is defined
with the method’s BipotModePS property. EnumPalmSensBipotMode.Constant sets it
to a fixed potential and EnumPalmSensBipotMode.Offset sets it to an offset of the
primary working electrode. The value in Volt of the fixed or offset potential is defined with
the method’s BiPotPotential property.)

 37

Getting started with PalmSens SDK for WPF

• AuxInput, similar to PSTrace it is possible to configure the readings of the auxilliary input.

Using the PalmSens.AuxInput.AuxiliaryInput class you can assign a name, offset, gain

and unit to the auxilliary input. The following example demonstrates how to set up the

Pt1000 temperature sensor from PSTrace.

psCommSimpleWPF.comm.AuxInputSelected = new PalmSens.AuxInput.AuxiliaryInpu

tType(true, "Pt1000", "Temperature sensor", -275f, 189.1f,

 new PalmSens.Units.Temperature());

The can be ignored and set to true, the second argument is the name, third is the
description, fourth the offset, fifth the slope and the final argument is an instance of one
of the unit classes in the PalmSens.Units namespace.

• Reverse, record reverse current as used by Square Wave Voltammetry

• PolyStatWE, not supported in the PalmSens SDK

• DCcurrent, record the DC current as used with AC Voltammetry

• CEPotential, PalmSens 4 only

The PSSDKBiPotAuxExample example project demonstrates how to record extra values.

7.17 Multiplexer

The PalmSens.Method class is also used to specify the multiplexer settings for sequential and
alternating measurements. Alternating multiplexer measurements restricted to the chronoamperometry
and chronopotentiometry techniques.

The enumerator property PalmSens.Method.MuxMethod defines the type multiplexer measurement.

methodCA.MuxMethod = MuxMethod.None; //Default setting, no multiplexer

methodCA.MuxMethod = MuxMethod.Alternatingly;

methodCA.MuxMethod = MuxMethod.Sequentially;

//The channels on which to measure are specified in a boolean array

PalmSens.Method.UseMuxChannel: methodCA.UseMuxChannel = new bool[] { true, true,

false, false, false, false, false, true };

38

Getting started with PalmSens SDK for WPF

The code above will perform a measurement on the first two and last channels of an 8-channel
multiplexer. For a 16-channel multiplexer you would also need to assign true or false to the last 8
channels.

Alternating multiplexer measurement can only measure on successive channels and must start with
the first channel (i.e. it is possible to alternatingly measure on channels 1 through 4 but it is not
possible to alternatingly measure on channel 1, 3 and 5). The multiplexer functionality is demonstrated
in the PSSDKMultiplexerExample project.

7.17.1 Multiplexer settings
When using a MUX8-R2 multiplexer the multiplexer settings must be set digitally instead of via the
physical switches on the earlier multiplexer models. The type of multiplexer should be specified in the
connected device’s capabilities, when the multiplexer is connected before connecting to the software
the capabilities are updated automatically. Otherwise, when using the MUX8-R2 the
PalmSens.Devices.DeviceCapabilities.MuxType should be set to
PalmSens.Comm.MuxType.Protocol manually or by calling
PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfo,
PalmSens.Comm.CommManager.ClientConnection.ReadMuxInfoAsync when connected
asynchronously.

For the MUX8-R2 the settings for a measurement are set in PalmSens.Method.MuxSett property with
an instance of the PalmSens.Method.MuxSettings class. For manual control these settings can be
set using the PalmSens.Comm.ClientConnection.SetMuxSettings function,
PalmSens.Comm.ClientConnection.SetMuxSettingsAsync when connected asynchronously.

method.MuxSett = new Method.MuxSettings(false)
{

CommonCERE = false,

ConnSEWE = false,
ConnectCERE = true,

OCPMode = false,

SwitchBoxOn = false,

UnselWE = Method.MuxSettings.UnselWESetting.FLOAT
};

7.18 Versus OCP

The versus open circuit potential settings (OCP) are defined in the PalmSens.Method.OCPmode,
PalmSens.Method.OCPMaxOCPTime, and PalmSens.Method.OCPStabilityCriterion properties.
The OCPmode is a bitmask specifies which of the following technique dependent properties or
combination thereof will be measured versus the OCP potential:

• Linear Sweep Voltammetry:
1. BeginPotential = 1
2. EndPotential = 2

• (Fast) Cyclic Voltammetry
1. Vtx1Potential = 1
2. Vtx2Potential = 2
3. BeginPotential = 4

• Chronoamperometry
1. Potential = 1

• Impedance Spectroscopy (Fixed potential and Time Scan)
1. Potential = 1

• Impedance Spectroscopy (Potential Scan)
1. BeginPotential = 1
2. EndPotential = 2

The progress and result of the versus OCP measurement step are reported in the
PalmSens.Comm.MeasureVersusOCP class, which can be obtained by subscribing to the

 39

Getting started with PalmSens SDK for WPF

PalmSens.Comm.CommManager.DeterminingVersusOCP event which is raised when the versus
OCP measurement step is started.

//Defining versus OCP measurement step for a Cyclic Voltammetry measurement
_methodCV.OCPmode = 7; //Measure the (Vtx1Potential) 1 + (Vtx2Potential) 2 +

(BeginPotential) 4 = 7 versus the OCP potential

_methodCV.OCPMaxOCPTime = 10; //Sets the maximum time the versus OCP step can take to
10 seconds

_methodCV.OCPStabilityCriterion = 0.02f; //The OCP measurement will stop when the

change in potential over time is less than 0.02mV/s, when set to 0 the OCP measurement
step will always run for the OCPMaxOCPTime

7.19 Properties for EmStat Pico

There are two method parameters specific to the EmStat Pico. The PalmSens.Method.PGStatMode
property sets the mode in which the measurement should be run, low power, high speed or max
range. This mode can be set for all techniques but Electrochemical Impedance Spectroscopy. The
second property is PalmSens.Method.SelectedPotentiostatChannel which let you choose on which
channel the EmStat Pico should run the measurement.

