

MethodSCRIPT SDK Example – Linux

Last revision: April 20, 2020

© 2020 PalmSens BV

www.palmsens.com

2

MethodSCRIPT SDK Example – Linux

 Contents

The example MethodSCRIPTExample.c found in the /MethodSCRIPTExample_C_Linux/src folder
demonstrates basic communication with the EmStat Pico. The example allows the user to start
measurements on the EmStat Pico from a Linux PC using a simple C program which makes use of the
MethodSCRIPT SDK (C libraries).

 Basic Console Example (MethodSCRIPTExample.c)

This example demonstrates how to implement serial communication with the EmStat Pico to

• Establish a connection with the device

• Write a MethodSCRIPT to the device

• Read and parse the measurement data packages from the device

• Print the parsed data to the console

• Write the parsed data to a CSV file

This does not include error handling, method validation etc.
This example is build using Eclipse CDK (snap distribution) on Ubuntu 19.04.

The console output of one of the examples is shown below.

 3

MethodSCRIPT SDK Example – Linux

 Communications

The MSComm.c from the MethodSCRIPT SDK (C libraries) acts as the communication object to
read/write from/to the EmStat Pico. The port it will open is configured using the BAUD_RATE define
located in “MethodSCRIPTExample.h”. The serial port of the Pico can be obtained by issuing the
following command in the terminal:
dmesg | grep FTDI

It is usually called “ttyUSBx” where x is a number.

The example implements the serial communication interface in the file “SerialPort_Linux.c”. This file
implement the same C-interface to provide a layer of abstraction. On Linux the serial port can be
accessed using the TERMIOS library which abstracts the interface as if it is a file and provides open,
read, write and close functions. Besides that the port has to be configured using cflags. Note: only
baudrates of the type speed_t are supported. The exact configuration for this example is as follows:

// Set baudrate for both input and output

speed_t baud_config = baud_to_termios(BAUD_RATE);

cfsetispeed(&config, baud_config);

cfsetospeed(&config, baud_config);

// Input flags - Turn off input processing and flow control

config.c_iflag &= ~(IXON | IXOFF | IXANY);

// Local mode flags - disable echo and put the interface in non-canonical

mode

config.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);

// Output flags - Turn off output processing

config.c_oflag &= ~OPOST;

// Control mode flags - Turn off output processing and act as null-modem

config.c_cflag &= ~(PARENB | CSTOPB | CSIZE | CRTSCTS);

config.c_cflag |= CS8 |CREAD | CLOCAL;

This configuration is set in the OpenSerialPort function of the example. The complete abstracted
interface for this example is shown below.

/// Opens the serial port to which the EmStat Pico is connected.

/// Returns: 1 on successful connection, 0 in case of failure.

int OpenSerialPort();

/// Writes the input character to the device

/// Returns: 1 if data is written successfully, 0 in case of failure.

int WriteToDevice(char c);

/// Reads a character read from the EmStat Pico

/// Returns: -1 on failure or the value of the received byte on success

int ReadFromDevice();

/// Closes the serial port

/// Returns: 1 if closed successfully, 0 in case of failure.

int CloseSerialPort();

The ReadFromDevice / WriteToDevice functions are required to initiate the MSComm communication
library and have to be passed to the init function.

MSComm msComm;
RetCode code = MSCommInit(&msComm, &WriteToDevice, &ReadFromDevice);

4

MethodSCRIPT SDK Example – Linux

3.1 Sending the MethodSCRIPT

The MethodSCRIPT can be read from a txt file stored in the PC. In this example, the MethodSCRIPT
files are stored in the ScriptFiles directory. The code snippet below is used in the example to read the
MethodSCRIPT from the file and in turn send it to the device.

int SendScriptFile(char* fileName)

{

 FILE *fp;

 //Including the string termination character (0)

 char str[MS_MAX_LINECHARS+1];

 fp = fopen(fileName, "r");

 if (fp == NULL) {

 printf("Could not open file %s", fileName);

 return FAILURE;

 }

// Reads a single line from the script file and sends it to the device.

 while (fgets(str, MS_MAX_LINECHARS, fp) != NULL)

 {

 WriteStr(&msComm, str);

 }

 fclose(fp);

 return SUCCESS;

}

3.2 Receiving measurement data packages

This example uses the MSComm library to receive and parse the data packages from a measurement.
In order to read and parse the measurement data packages from the device, the Receive Package
function from the MSComm library can be used. This function requires a reference to an initiated
MSComm struct (msComm) and it returns the parsed data in the referenced MeasureData struct
(data)

code = ReceivePackage(&msComm, &data);

 5

MethodSCRIPT SDK Example – Linux

3.3 Parsing the measurement data packages

Each measurement data package returned by the function ReadBuf() in MSComm library, can be
parsed further to obtain the actual data values. For example, here is a set of data packages received
from a Linear Sweep Voltammetry (LSV) measurement on a dummy cell with 10kOhm resistance.

e\n

M0000\n

Pda7F85F3Fu;ba48D503Dp,10,288\n

Pda7F9234Bu;ba4E2C324p,10,288\n

Pda806EC24u;baAE16C6Dp,10,288\n

Pda807B031u;baB360495p,10,288\n

*\n

\n

While parsing a measurement package, various identifiers are used to identify the type of package.
For example, In the above sample,

1. ‘e’ is the confirmation of the “execute MethodSCRIPT” command.
2. ‘M’ marks the beginning of a measurement loop.
3. ‘P’ marks the beginning of a measurement data package.
4. “*\n” marks the end of a measurement loop.
5. “\n” marks the end of the MethodSCRIPT.

Most techniques return the data values Potential (set cell potential in V) and Current (measured
current in A). The data values to be received from a measurement can be sent through ‘pck’
commands in the MethodSCRIPT.

In case of Electrochemical Impedance Spectroscopy (EIS) measurements, the following variable types
can be sent with the MethodSCRIPT and received as measurement data values.

• Frequency (set frequency in Hz)

• Real part of complex Impedance (measured impedance Ohm)

• Imaginary part of complex Impedance (measured impedance in Ohm)

The following metadata values can also be obtained from the data packages, if present.

• CurrentStatus (OK, Underload, Overload, Overload warning)

• CurrentRange (the current range in use)

• Noise

3.3.1 Parsing the measurement data packages
Each measurement data package begins with the header ‘P’ and is terminated by a ‘\n’. The
measurement data package can be split into data value packages based on the delimiter ‘;’.
Each of these data value packages can then be parsed separately to get the actual data values.

The type of data in a data package is identified by its variable type:

• The potential readings are identified by the string “da”

• The current readings are identified by the string “ba”

• The frequency readings are identified by the string “dc”

• The real impedance readings are identified by the string “cc”

• The imaginary impedance readings are identified by the string “cd”

For example, in the sample package seen above, the variable types are
da7F85F3Fu - “da” for potential reading and
ba48D503Dp,10,288 - “ba” for current reading.

6

MethodSCRIPT SDK Example – Linux

The following 7 characters hold the 28-bit signed integer data value followed by one SI unit prefix
character. The data value for the current reading (7 characters) from the above sample package is
“48D503D” followed by the SI unit prefix ‘p’ (pico, which is 1e-12 A).

After obtaining variable type and the data values from the package, the metadata values can be
parsed, if present.

3.3.2 Parsing the metadata values
The metadata values are separated based on the delimiter ‘,’ and each of the values is further parsed
to get the actual value.

The first character of each metadata value metaData[0] identifies the type of metadata.

‘1’ - status
‘2’ - Current range index
‘4’ - Noise

The metadata status is a 1 character hexadecimal bit mask.

For example, in the above sample, the available metadata values for current data are,
10,288. The first metadata value is 10.

1 – metadata status – 0 indicates OK.

The metadata type current range is represented by a 2-digit hexadecimal value. If the first bit is high
(0x80), it indicates a high-speed mode current range. The hexadecimal value can be converted to int
to get the current range.

For example, in the above sample, the second metadata available is 288.
2 – indicates the type – current range
88 – indicates the hexadecimal value for current range index – 1mA. The first bit 8 implies that it is
high speed mode current range.

 7

MethodSCRIPT SDK Example – Linux

3.3.3 Sample output

3.3.3.1 LSV

Here’s a sample measurement data package from a LSV measurement on a dummy cell with 10kOhm
resistance and its corresponding output.

Pda7F85F3Fu;ba4BA99F0p,10,288

Output: E (V) = -4.999E-01

i (A) = -4.999E-01
Status : OK
CR : 1mA (High speed)

3.3.3.2 EIS

Here’s a sample measurement data package from an EIS measurement on a dummy cell with 10
kOhm resistance and its corresponding output.

PdcDF5DFF4u;cc896D904m,10,287;cd82DB1A8u,10,287

Output: Frequency(Hz): 100.0

Zreal(Ohm): 9885.956
Zimag(Ohm): 2.995
Status: OK
CR: 200uA (High speed)

	1 Contents
	2 Basic Console Example (MethodSCRIPTExample.c)
	3 Communications
	3.1 Sending the MethodSCRIPT
	3.2 Receiving measurement data packages
	3.3 Parsing the measurement data packages
	3.3.1 Parsing the measurement data packages
	3.3.2 Parsing the metadata values
	3.3.3 Sample output
	3.3.3.1 LSV
	3.3.3.2 EIS

