

MethodSCRIPT SDK Example -
Arduino

Last revision: December 11, 2019

© 2019 PalmSens BV

www.palmsens.com

2

MethodSCRIPT SDK Example - Arduino

1 Contents

The arduino example MethodSCRIPTExample.ino found in the
/MethodSCRIPTExample_Arduino/MethodSCRIPTExample folder demonstrates basic communication
with the EmStat Pico through Arduino MKR ZERO using the MethodSCRIPT SDK (C libraries). The
example allows the user to start measurements on the EmStat Pico from a Windows PC connected to
the Arduino through USB.

2 Hardware setup:

• To run this example, connect your Arduino MKRZERO Serial1 port Rx (pin 13), Tx (pin 14)
and GND to the EmStat Pico Serial Tx, Rx and GND respectively.

• Make sure the UART switch block SW4 on the EmStat Pico dev board has the switches for
MKR 3 and 4 turned on.

• The Arduino board should be connected normally to a PC.

• If not powering the EmStat Pico by other means, it should be connected to the PC through
USB for power.

3 Environment setup:

• To run this example, you must include the MethodSCRIPT C libraries and the MathHelper
library.

• To do this, follow the menu Sketch -> Include Library -> Add .ZIP/Library and select the
MethodSCRIPTComm folder. Follow the same process to add the MathHelperLibrary folder.

4 How to use

• Compile and upload this sketch through the Arduino IDE.

• Next, open a serial monitor to the Arduino (you can do this from the Arduino IDE).

• You should see messages being printed containing measured data values from the EmStat
Pico as shown in the screenshot below.

 3

MethodSCRIPT SDK Example - Arduino

5 Communications

The MSComm.c from the MethodSCRIPT SDK (C libraries) acts as the communication object to
read/write from/to the EmStat Pico. In order to use the C library, MSComm, the extern C wrapper has
to be used because Arduino uses a C++ compiler.

extern "C" {

 #include <MSComm.h>

 #include <MathHelpers.C>

};

As MSComm is the communication object for the EmStat Pico it needs some read/write functions to be
passed in through the MSCommInit(). However, because the C compiler doesn't understand C++
classes, the write/read functions from the Serial class are wrapped in a normal function, first as shown
below.

int write_wrapper(char c)

{

 if(s_printSent == true)

 {

 //Send all data to PC as well for debugging purposes

 Serial.write(c);

 }

 return Serial1.write(c);

}

int read_wrapper()

{

 int c = Serial1.read();

 if(s_printReceived == true && c != -1) //-1 means no data

 {

 //Send all received data to PC for debugging purposes

 Serial.write(c);

 }

 return c;

}

The MSComm library has to be initiated with these read/write functions as shown below.

MSComm _msComm;
RetCode code = MSCommInit(&_msComm, &write_wrapper, &read_wrapper);

4

MethodSCRIPT SDK Example - Arduino

5.1 Connecting to the device

The code within the setup() function is executed only once.

In order to begin communication, the serial ports are initiated with the baud rate 230400.

 //Init serial ports

 //Serial is the Arduino serial port communicating with the PC

 Serial.begin(230400);

 //Serial1 is the Arduino serial port communicating with the Emstat Pico

 Serial1.begin(230400);

 //Waits until the Serial port is active

 while(!Serial);

‘Serial’ is the port for communicating with the PC via the USB connection of the Arduino and used to
print the parsed value.
‘Serial1’ is the port for communicating with the Emstat Pico. This port is used to send the
MethodSCRIPT and receive the resulting data to be parsed by the Arduino.
The MethodSCRIPT can be either stored in a SD-card on the Arduino or stored in a constant string. In
the example, the MethodSCRIPT is stored in a constant char array as shown below.

//LSV measurement configuration parameters

const char* LSV_METHOD_SCRIPT = "e\n"

 "var c\n"

 "var p\n"

 "set_pgstat_mode 3\n"

 "set_max_bandwidth 200\n"

 "set_cr 500u\n"

 "set_e -500m\n"

 "cell_on\n"

 "wait 1\n"

 "meas_loop_lsv p c -500m 500m 50m 100m\n"

 "pck_start\n"

 "pck_add p\n"

 "pck_add c\n"

 "pck_end\n"

 "endloop\n"

 "celloff\n\n";

5.2 Sending and receiving data packages

Now that the serial port and MSComm object is set up the Arduino is able to interface with the EMstat
Pico. The example uses the MSComm library to perform read and write operations. Both read and
write functions function require a reference to the initiated MSComm struct (_msComm) to be passed
along.

The WriteStr function has one additional parameter which is the c-string to send to the EMstat Pico.
void SendScriptToDevice(const char* scriptText)

{

 WriteStr(&_msComm, scriptText);

}

While looking almost identical to the write-function the ReceivePackage function uses the second

argument for returning the received data.
code = ReceivePackage(&_msComm, &data);

 5

MethodSCRIPT SDK Example - Arduino

5.3 Parsing the measurement data packages

Each measurement data package returned by the function ReadBuf() in MSComm library, can be
parsed further to obtain the actual data values. For example, here is a set of data packages received
from a Linear Sweep Voltammetry (LSV) measurement on a dummy cell with 10kOhm resistance.

e\n

M0000\n

Pda7F85F3Fu;ba48D503Dp,10,288\n

Pda7F9234Bu;ba4E2C324p,10,288\n

Pda806EC24u;baAE16C6Dp,10,288\n

Pda807B031u;baB360495p,10,288\n

*\n

\n

While parsing a measurement package, various identifiers are used to identify the type of package.
For example, In the above sample,

1. ‘e’ is the confirmation of the “execute MethodSCRIPT” command.
2. ‘M’ marks the beginning of a measurement loop.
3. ‘P’ marks the beginning of a measurement data package.
4. “*\n” marks the end of a measurement loop.
5. “\n” marks the end of the MethodSCRIPT.

Most techniques return the data values Potential (set cell potential in V) and Current (measured
current in A). The data values to be received from a measurement can be sent through ‘pck’
commands in the MethodSCRIPT.

In case of Electrochemical Impedance Spectroscopy (EIS) measurements, the following variable types
can be sent with the MethodSCRIPT and received as measurement data values.

• Frequency (set frequency in Hz)

• Real part of complex Impedance (measured impedance Ohm)

• Imaginary part of complex Impedance (measured impedance in Ohm)

The following metadata values can also be obtained from the data packages, if present.

• CurrentStatus (OK, Underload, Overload, Overload warning)

• CurrentRange (the current range in use)

• Noise

5.3.1 Parsing the measurement data packages
Each measurement data package begins with the header ‘P’ and is terminated by a ‘\n’. The
measurement data package can be split into data value packages based on the delimiter ‘;’.
Each of these data value packages can then be parsed separately to get the actual data values.

The type of data in a data package is identified by its variable type:

• The potential readings are identified by the string “da”

• The current readings are identified by the string “ba”

• The frequency readings are identified by the string “dc”

• The real impedance readings are identified by the string “cc”

• The imaginary impedance readings are identified by the string “cd”

For example, in the sample package seen above, the variable types are
da7F85F3Fu - “da” for potential reading and
ba48D503Dp,10,288 - “ba” for current reading.

6

MethodSCRIPT SDK Example - Arduino

The following 7 characters hold the 28-bit signed integer data value followed by one SI unit prefix
character. The data value for the current reading (7 characters) from the above sample package is
“48D503D” followed by the SI unit prefix ‘p’.

In the above sample package, the SI unit prefix for current data is ‘p’ (pico) which is 1e-12 A.

After obtaining variable type and the data values from the package, the metadata values can be
parsed, if present.

5.3.2 Parsing the metadata values
The metadata values are separated based on the delimiter ‘,’ and each of the values is further parsed
to get the actual value.

The first character of each metadata value metaData[0] identifies the type of metadata.

‘1’ - status
‘2’ - Current range index
‘4’ - Noise

The metadata status is a 1 character hexadecimal bit mask.

For example, in the above sample, the available metadata values for current data are,
10,288. The first metadata value is 10.

1 – metadata status – 0 indicates OK.

The metadata type current range is represented by a 2-digit hexadecimal value. If the first bit is high
(0x80), it indicates a high-speed mode current range. The hexadecimal value can be converted to int
to get the current range.

For example, in the above sample, the second metadata available is 288.
2 – indicates the type – current range
88 – indicates the hexadecimal value for current range index – 1mA. The first bit 8 implies that it is
high speed mode current range.

5.3.3 Sample output

5.3.3.1 LSV

Here’s a sample measurement data package from a LSV measurement on a dummy cell with 10kOhm
resistance and its corresponding output.

Pda7F85F3Fu;ba4BA99F0p,10,288

Output: E (V) = -4.999E-01
i (A) = -4.999E-01
Status : OK
CR : 1mA (High speed)

5.3.3.2 EIS

Here’s a sample measurement data package from an EIS measurement on a dummy cell with 10
kOhm resistance and its corresponding output.

PdcDF5DFF4u;cc896D904m,10,287;cd82DB1A8u,10,287

Output: Frequency(Hz): 100.0
Zreal(Ohm): 9885.956
Zimag(Ohm): 2.995
Status: OK
CR: 200uA (High speed)

	1 Contents
	2 Hardware setup:
	3 Environment setup:
	4 How to use
	5 Communications
	5.1 Connecting to the device
	5.2 Sending and receiving data packages
	5.3 Parsing the measurement data packages
	5.3.1 Parsing the measurement data packages
	5.3.2 Parsing the metadata values
	5.3.3 Sample output
	5.3.3.1 LSV
	5.3.3.2 EIS

