
MethodSCRIPT v1.5

Version v1.5, 2024-03-25

Table of Contents

1. Introduction . 1

1.1. Terminology . 1

2. Features. 2

2.1. Implemented features . 2

2.2. Planned future features . 3

2.3. Supported devices . 3

3. Script format . 4

3.1. Relation between MethodSCRIPT and communication protocol . 4

4. MethodSCRIPT variables . 6

4.1. MethodSCRIPT variables . 6

4.2. Script command variables. 7

4.3. Measurement data package variables. 7

5. Interpreting measurement data packages . 9

5.1. Package format . 9

5.2. Variable sub package format . 9

5.3. Package parsing example. 10

6. Measurement loop commands. 12

6.1. Introduction . 12

6.2. Measurement loop example . 12

6.3. Measurement loop output. 13

7. Variable types. 15

8. Script argument types . 16

8.1. var . 16

8.2. array . 16

8.2.1. Array Access Syntax . 17

8.3. literal . 18

8.4. VarType . 18

8.5. integer types (uint8, uint16, uint32) . 18

8.6. condition expressions . 18

8.7. string . 20

8.7.1. Interpolated strings . 20

8.8. Optional arguments . 21

9. Optional arguments . 22

9.1. poly_we . 22

9.2. nscans . 23

9.3. nscans_avg . 24

9.4. nscans_equil. 24

9.5. meta_msk. 25

9.6. eis_tdd . 25

9.7. eis_opt . 27

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | ii

9.8. eis_acdc . 28

9.9. ms_eis_acdc. 29

10. Tags. 31

10.1. on_finished: . 31

11. Error handling. 33

12. PGStat modes . 34

12.1. PGStat mode off . 34

12.2. PGStat mode low speed. 34

12.3. PGStat mode high speed . 34

12.4. PGStat mode max range . 34

12.5. PGStat mode poly_we . 34

12.6. PGStat mode galvanostatic . 34

13. Script command summary . 35

13.1. Command summary . 35

13.2. MethodSCRIPT version on instruments. 40

14. Script command description . 41

14.1. var . 41

14.2. store_var. 41

14.3. array . 42

14.4. array_set. 43

14.5. array_get . 44

14.6. copy_var. 44

14.7. add_var . 45

14.8. sub_var. 45

14.9. mul_var. 46

14.10. div_var . 46

14.11. mod_var . 47

14.12. bit_and_var . 48

14.13. bit_or_var . 48

14.14. bit_xor_var . 49

14.15. bit_lsl_var . 49

14.16. bit_lsr_var . 50

14.17. bit_inv_var. 51

14.18. int_to_float . 51

14.19. float_to_int . 52

14.20. set_e. 52

14.21. set_i . 53

14.22. wait. 53

14.23. set_int. 54

14.24. await_int . 54

14.25. loop . 55

14.26. endloop . 56

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | iii

14.27. breakloop . 56

14.28. if, elseif, else, endif . 56

14.29. meas . 57

14.30. meas_loop_lsv . 58

14.31. meas_loop_acv. 59

14.32. meas_loop_lsp . 61

14.33. meas_loop_cv. 62

14.34. meas_fast_cv . 63

14.35. meas_loop_dpv . 66

14.36. meas_loop_swv . 67

14.37. meas_loop_npv . 69

14.38. meas_loop_ca . 70

14.39. meas_loop_ca_alt_mux . 71

14.40. meas_fast_ca . 72

14.41. meas_loop_cp . 73

14.42. meas_loop_cp_alt_mux . 74

14.43. meas_loop_pad . 76

14.44. meas_loop_ocp . 77

14.45. meas_loop_ocp_alt_mux . 78

14.46. meas_loop_eis . 79

14.47. meas_loop_geis . 80

14.48. meas_ms_eis . 82

14.49. set_autoranging . 84

14.50. pck_start . 85

14.51. pck_add . 85

14.52. pck_end . 86

14.53. set_max_bandwidth . 86

14.54. set_cr (deprecated) . 87

14.55. set_range . 88

14.56. set_range_minmax . 89

14.57. cell_on . 90

14.58. cell_off . 91

14.59. set_pgstat_mode . 91

14.60. send_string . 92

14.61. set_gpio_cfg . 92

14.62. set_gpio_pullup. 93

14.63. set_gpio . 93

14.64. get_gpio . 94

14.65. set_gpio_msk . 95

14.66. get_gpio_msk . 95

14.67. set_pot_range (deprecated) . 96

14.68. set_pgstat_chan . 97

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | iv

14.69. set_poly_we_mode. 97

14.70. get_time . 98

14.71. file_open . 99

14.72. file_close. 99

14.73. set_script_output . 100

14.74. hibernate . 100

14.75. i2c_config . 102

14.76. i2c_write_byte. 103

14.77. i2c_read_byte . 104

14.78. i2c_write . 105

14.79. i2c_read . 106

14.80. i2c_write_read . 107

14.81. abort. 108

14.82. set_scan_dir . 108

14.83. timer_start . 109

14.84. timer_get . 110

14.85. set_channel_sync . 110

14.86. set_acquisition_frac . 111

14.87. set_acquisition_frac_autoadjust . 112

14.88. set_ir_comp . 113

14.89. set_e_aux . 114

14.90. mux_config . 114

14.91. mux_get_channel_count . 115

14.92. mux_set_channel . 116

14.93. alter_vartype . 116

14.94. notify_led . 117

15. MethodSCRIPT examples . 119

15.1. EIS example . 119

15.2. LSV example . 119

15.3. SWV example . 121

15.4. Fast CV example. 122

15.5. Fast CA example . 124

15.6. I²C example — temperature sensor . 125

15.7. I²C example — real time clock . 127

15.8. I²C example — EEPROM . 129

16. Document version changes . 132

Version 1.1 Rev 1 . 132

Version 1.1 Rev 2 . 132

Version 1.1 Rev 3 . 132

Version 1.1 Rev 4 . 132

Version 1.2 Rev 1 . 132

Version 1.2 Rev 2 . 133

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | v

Version 1.3 Rev 1 . 133

Version 1.4 Rev 1 . 134

Version 1.5 Rev 1 . 135

Appendix A: Error codes . 136

Appendix B: Device-specific information. 141

B.1. PGStat mode properties. 141

B.1.1. EmStat4 HR . 141

B.1.2. EmStat4 LR . 141

B.1.3. EmStat Pico . 142

B.2. EIS properties. 142

B.3. Current ranges . 143

B.3.1. EmStat4 LR . 143

B.3.2. EmStat4 HR . 143

B.3.3. EmStat Pico . 144

B.4. Potential ranges . 145

B.5. Supported variable types for meas command . 145

B.6. Device I/O pin configurations . 146

Appendix C: Variable types . 148

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | vi

Chapter 1. Introduction

The MethodSCRIPT scripting language is designed to improve the flexibility of the PalmSens potentiostat and

galvanostat devices for OEM users. It allows users to start measurements with arguments that are similar to the

arguments in PSTrace.

PalmSens provides libraries and examples for handling low level communication with the instrument and

generating scripts for supported devices.

Although the base of MethodSCRIPT is device-agnostic, there are differences between instruments that prevent

identical scripts from running on multiple devices. These differences are indicated in their appropriate chapter.

For documentation regarding detailed device capabilities please visit palmsens.com.

1.1. Terminology

PGStat Potentiostat / Galvanostat

EmStat PGStat device series by PalmSens

Cell The electrochemical system to be analysed

CE Counter Electrode

RE Reference Electrode

WE Working Electrode

SE Sense Electrode

Technique A standard electrochemical measurement technique

Iteration A single execution of a loop

SI International System of Units

Var (MethodSCRIPT) variable (usually command input)

Var [out] Variable that will be used for command output

Var [in/out] Variable which value is both used as command input and output

HEX Hexadecimal (= base 16) number (e.g. 0xA1)

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 1

https://www.palmsens.com/

Chapter 2. Features

2.1. Implemented features

• Measurements can be tested in PSTrace and then exported to MethodSCRIPT. This allows for convenient

testing of different measurements in PSTrace. The resulting MethodSCRIPT can then be easily imported as

a text file and executed from within the user application. PSTrace can also run custom scripts and is able to

plot the resulting measurement data.

• Support for the following electrochemical techniques[1]:

◦ Chronoamperometry (CA)

◦ Linear Sweep Voltammetry (LSV)

◦ Cyclic Voltammetry (CV)

◦ Differential Pulse Voltammetry (DPV)

◦ Square Wave Voltammetry (SWV)

◦ Normal Pulse Voltammetry (NPV)

◦ Pulsed Amperometric Detection (PAD)

◦ Electrochemical Impedance Spectroscopy (EIS)

◦ Galvanostatic Electrochemical Impedance Spectroscopy (GEIS)

◦ Open Circuit Potentiometry (OCP)

◦ Chronopotentiometry (CP)

◦ Linear Sweep Potentiometry (LSP)

◦ Multi-Sine Electrochemical Impedance Spectroscopy (MSEIS)

◦ AC Voltammetry (ACV)

◦ Fast Cyclic Voltammetry (FCV)

◦ Fast Chronoamperometry (FCA)

• Storing of measurement data to onboard flash storage or SD card (if available on hardware).

• Support for BiPot / Poly WE.

• Different measurements can be chained after one another in the same script, making it possible to combine

multiple measurements without communication overhead.

• Support for user code during a measurement step.

• Up to 26 variables or arrays can be stored and referenced to from within the script. This allows for fast burst

measurements that are not slowed down by communication.

• A comprehensive set of MethodSCRIPT commands:

◦ Basic math operations (addition, subtraction, multiplication, division).

◦ Bitwise operations (and, or, xor, logical shift left/right, inversion).

◦ Conditional statements (if, elseif, else, endif).

◦ Support for loops.

◦ Synchronization commands (wait amount of time, wait until interval).

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 2

• Exact timing control.

• Script syntax will be verified when loading. Runtime errors are checked during execution.

• Autorun script at start-up from persistent memory.

• Low-power[2] mode (hibernate).

• Direct control over GPIO and the I²C interface for communication with external sensors and actuators.

2.2. Planned future features

• The following techniques are planned:

◦ Stripping Chronopotentiometry (SCP)

2.3. Supported devices

• EmStat4

• EmStat Pico

[1] Not all techniques are supported by every instrument.

[2] The hibernate command is supported on all instruments, but only low-power on EmStat Pico.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 3

Chapter 3. Script format

A script consists of a series of MethodSCRIPT commands. Each command starts with the command name and

is followed by zero or more arguments. Arguments are separated by one or more spaces (or tabs). Tabs and

spaces at the start and end of the line are ignored. Each command is terminated by a newline character ('\n' ,

ASCII code 10). Lines are limited to a maximum of 128 characters (including leading and trailing tabs and

spaces and the newline character). Empty lines (including lines only containing spaces and tabs) are not allowed

in MethodSCRIPT.

Comments can be added to a line by inserting a # character followed by the comment. A line containing only a

comment is allowed.


Since MethodSCRIPT v1.4, comments may take up a tiny amount of storage and execution

time to preserve line numbering.

The following small MethodSCRIPT example demonstrates the syntax.

This is a comment

wait 100m # Comments can also follow other text

if 1 < 2

 send_string "Hello world"

endif

3.1. Relation between MethodSCRIPT and communication protocol

MethodSCRIPTs are sent to the device using the communication protocol, which is described in detail in a

separate document. Since there is a tight relationship between the two protocols, a brief summary and example

are given below.

To send a script to the device:

• Send e (for execute) or l (for load), followed by a newline character (\n).

• Send the MethodSCRIPT, line by line, each line followed by a newline character (\n).

• Send an empty line (\n) to denote the end of the script.

The e and l command, as well as the empty line, are not part of the MethodSCRIPT language but are part of the

device communication protocol.

The following example shows how the above MethodSCRIPT can be transmitted and executed using the device

communication protocol. In this example, the newline characters are rendered as \n .

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 4

e \n

This is a comment \n

wait 100m # Comments can also follow other text \n

if 1 < 2 \n

 send_string "Hello world" \n

endif \n

\n

The response of above script will be:

e \n

Thello world \n

\n

This response can be broken down into three parts:

1. The "e" followed by \n acknowledges that the execute command has been started.

2. The "T" followed by "hello world" is the output of the send_string command.

3. The empty line denotes the (successful) end of the script execution.

In the remainder of this document, only the MethodSCRIPT commands will be shown, without the e or l
command, and without the empty line at the end. For readability, the \n will be omitted as well, except when

needed for clarification.


In some example scripts provided on the web or in other documents, the e is included as the

first line of the script. This allows for simple copy-pasting to a terminal application in order to

directly execute the script. It should be clear from context when the e command should be

added (if absent) or removed (if present).

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 5

Chapter 4. MethodSCRIPT variables

4.1. MethodSCRIPT variables

MethodSCRIPT variables represent numerical values that can be used within the script. They can be stored

internally either in floating-point format or as signed integer. Some commands only accept integer variables,

others will only accept floating-point variables (floats). In Chapter 14, Script command description, the

arguments of each command are documented. See the "Arguments" table in each command section.

Floating-point variables are represented as a signed integer value followed by an SI prefix. See Table 1, “SI prefix

conversion table” for the available SI prefixes. Only SI prefixes available in this table can be used. For example, a

variable with a value of 100 and a prefix of m translates to a floating point value of 0.1 (= 100×10-3).

Table 1. SI prefix conversion table

SI prefix Text Factor

a atto 10-18

f femto 10-15

p pico 10-12

n nano 10-9

n nano 10-9

u micro 10-6

m milli 10-3

(space) (none) 100

k kilo 103

M mega 10-9

G giga 106

T tera 109

P peta 1012

E exa 1015

Integer variables end with an i instead of an SI prefix. If no prefix is provided, the number is assumed to be a

floating-point number. Integer variables can also be entered in hexadecimal or binary representation by prefixing

the value with 0x or 0b respectively. In this case, the i at the end of the number is optional. Hexadecimal and

binary representations are not allowed for floating-point variables.


Operations involving floating-point numbers often introduce (tiny) rounding errors.

Consequently, testing for equality of floating-point numbers (e.g. testing if x == 3) might give

unexpected results. This makes floating-point numbers less suitable when an exact integer

value is expected, such as with counters in loops.

 Integer variables are internally represented as 32-bit signed integers. They are not subject to

rounding. However, integers have a limited range (roughly -2×109 to +2×109) and are

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 6

truncated when dividing. For example, when an integer number 10 is divided by 4, the result

is 2 instead of 2.5.

Variables are not explicitly linked to a unit; instead the unit is implied by the associated Variable Type. Refer to

section Chapter 7, Variable types for more information.

Some number input parameters are not MethodSCRIPT variables. These include uint8, uint16 and uint32. For

such integer parameters, it is allowed but not necessary to append an i . They do not accept SI prefixes.


The representation of MethodSCRIPT variables is different for scripts and script output. The

format of the output is described in Chapter 5, Interpreting measurement data packages.

4.2. Script command variables

Variables that are part of the MethodSCRIPT are represented as a signed integer followed by a prefix for

floating-point values, or i for integer values.

Integer variables

255i

0xFF

0b11111111

Above example shows the integer value of the decimal number 255 using decimal, hexadecimal and binary

representation. In the example, the i is omitted in places where it is optional.

Float variables

500m

Above example shows the floating-point number 0.5 . It is stored internally as a floating-point number because it

has an SI prefix.

4.3. Measurement data package variables

Variables that are part of a measurement data package are represented as 28-bit unsigned hexadecimal values

with an offset of 0x8000000 (= 227). A floating-point variable has one of the SI prefixes shown in Table 1, “SI prefix

conversion table”, an integer variable ends with an i instead.

This format looks as follows:

HHHHHHHp

Where HHHHHHH is the hexadecimal value and p is the prefix character .

For example, a value of 0.01 would be represented as 800000Am and a value of -0.01 would be represented as

7FFFFF6m . PalmSens provides source code examples that showcase how to parse measurement data.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 7

To convert a MethodSCRIPT variable to a floating-point value, the following pseudocode can be used:

(HexToUint32(HHHHHHH) - 2^27) * SIFactorFromPrefix(p)

To convert a floating-point value to a MethodSCRIPT variable, the following pseudocode can be used:

Uint32ToHex(value) / SIFactorFromPrefix(p) + 2^27

Most programming languages have a built-in way of converting a HEX string to an integer. The function

SIFactorFromPrefix can be implemented by the user using, for example, a lookup table or a switch case to

translate the prefix character to its corresponding factor. Example implementations for several programming

languages and platforms can be found on our MethodSCRIPT Examples repository on GitHub.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 8

https://github.com/PalmSens/MethodSCRIPT_Examples

Chapter 5. Interpreting measurement data packages

5.1. Package format

Measurement packages consist of a header, followed by up to 33 variable packages (each with their own

variable type), followed by a terminating \n character. Consecutive packages are separated using a semicolon.

The package format is shown in Table 2, “Measurement data package format.”. Section 5.2, “Variable sub

package format” explains the format of the variable fields.

Table 2. Measurement data package format.

Header Var 1 Var separator Var 2 Var separator Var X Term

P Variable ; Variable ; Variable \n

5.2. Variable sub package format

The format for a variable sub package is:

Table 3. Variable sub package format.

Var 1 Metadata separator Var 1 Metadata 1 Metadata separator Var 1 metadata X

ttHHHHHHHp , MV..V , MV..V

Where:

tt Variable Type, represented as a base26 identifier that ranges from aa to jv . Variable Types

are always lower case. See Chapter 7, Variable types for more information.

HHHHHHHp MethodSCRIPT package variable. See Section 4.3, “Measurement data package variables”

for more information.

, Metadata separator

M Metadata type ID, see Table 4, “Metadata types.”.

V…V Metadata value as a hexadecimal value, length is determined by metadata type

Metadata fields contain extra information about the variable. Each variable can have multiple metadata fields.

See Table 4, “Metadata types.” for the possible metadata types.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 9

Table 4. Metadata types.

ID Name Length Content

1 Status 1 0 = OK

1 = timing not met (custom commands in the measurement loop took too long for

the specified interval of the measurement)

2 = overload (>95% of max ADC value)

4 = underload (<2% of max ADC value on EmStat Pico, <4% of max ADC value on

EmStat4)

8 = overload warning (>80% of max ADC value)

The overload and timing not met status flags mean that data is unreliable. When

overload warning or underload is set, the data is probably fine, but ranging should

be considered.

2 Range 2 Index of current range for current measurements (device-specific, see Section B.3,

“Current ranges”), or any other range for other measurements (e.g. potential range

for potential measurements). The range is just intended for diagnostic purposes,

and is not used in any calculations during parsing.

NOTE: Since originally only current ranges were implemented, this field is often

referred to as current range. However, it does not always apply to currents

anymore.

4 Noise 1 Noise level, intended for diagnostic purposes.

5.3. Package parsing example

A MethodSCRIPT device sends the following measurement data package:

Pda8000800u;ba8000800u,10,20B\n

This package contains two variables: da8000800u and ba8000800u,10,20B .

The variable sub package da8000800u can be broken down as follows:

• The Variable Type is da , which corresponds to VT_CELL_SET_POTENTIAL .

• The value is 08000800 – 0x8000000 = 0x800 or 2048. The prefix is u which stands for micro. This makes the

final value 2048 µV (= 2.048 mV).

• This variable has no metadata.

The variable sub package ba8000800u,10,20B can be broken down as follows:

• The Variable Type is ba , which corresponds to VT_CURRENT .

• The value is 08000800 – 0x8000000 = 0x800 or 2048. The prefix is u , which stands for micro. This makes the

final value 2048 uA (= 2.048 mA).

• This variable has two metadata packages, the first has an ID of 1 and a value of 0 , indicating it is a status

package with the value OK. The second metadata package has an ID of 2 and a value of 0B . This indicates

that it is a current range with the current range 0x0B (= 11). For example, on the EmStat Pico, this refers to

the 5 mA current range. This current range is just for diagnostic purposes, and is not used in any

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 10

calculations during parsing.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 11

Chapter 6. Measurement loop commands

6.1. Introduction

Most measurement techniques are implemented as measurement loop commands. This means that the

command will execute one iteration of the measurement technique. After this, all MethodSCRIPT commands

within the measurement loop are executed. When all commands have been executed, the device waits for the

correct timing to start the next iteration of the measurement technique and the process begins again for the next

iteration.


It is the responsibility of the user to ensure there is enough time between measurement

iterations to execute the user commands inside the loop.

If the user code takes more time than there is available, the next iteration is started too late, which likely results in

less accurate measurement results. This will be reflected in the metadata (see Table 4, “Metadata types.”), by

setting the "timing not met" status flag, so it can be detected by inspecting the metadata. How much time is

available for user code depends on many factors and should be determined empirically. For very fast

measurement iterations it is recommended to keep the code inside the loop as short as possible so it does not

take too long.


Often the communication data rate determines the minimum interval time for a measurement

loop. If timing errors are caused by communication, it could be a solution to store the

measurement results in a MethodSCRIPT array, and transmit the data after the

measurement loop.


In contrast to measurement loops, fast measurement techniques have dedicated commands

that will return all iterations at once. For example, a Fast CV measurement is performed

using the meas_fast_cv command.

Limitation:

It is not possible to use a fast technique or another measurement loop inside of a measurement loop. However,

measurement loops can be used freely inside of a normal loop and vice versa.

6.2. Measurement loop example

Below is an example of a MethodSCRIPT containing a measurement loop. This works as follows:

• The first five commands (before the meas_loop_ca command) are executed only once. These commands

define the two variables that will be used in the loop, configure the potentiostat, and turn on the cell.

• The meas_loop_ca command starts a Chronoamperometry (CA) measurement. Based on the provided

arguments, this will apply a DC potential of 100 mV and perform a current measurement iteration every 200

ms.

• After the measurement iteration has been performed, the MethodSCRIPT commands inside the

measurement loop are executed. In this example, a data package is transmitted here, containing the set

potential and measured current.

• When the endloop is reached, the firmware checks if another iteration should be performed. If this is the

case, the script waits until it is time and then performs the next iteration.

• When the last iteration has been completed, the script continues after the endloop command. In this

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 12

example the loop stops after 5 iterations since an interval of 200 ms and a total run time of 1000 ms was

specified.

var p

var c

Select channel 0, set PGStat mode to low-speed and turn on the cell.

set_pgstat_chan 0

set_pgstat_mode 2

cell_on

Run a measurement loop for the Chronoamperometry (CA) technique.

meas_loop_ca p c 100m 200m 1000m

 # The following commands are executed after each iteration (measurement).

 pck_start # Start a new data packet.

 pck_add p # Add the p variable (potential) to the packet.

 pck_add c # Add the c variable (current) to the packet.

 pck_end # Close and transmit the data packet.

 # At the endloop command, the script execution halts until it is time

 # for the next measurement loop iteration.

endloop

6.3. Measurement loop output

The start of a measurement loop is always indicated by a line in the format MXXXX where XXXX is the technique ID

of the measurement loop (see Table 5). The end of a measurement loop is indicated by a line containing only an

asterisk (*). In general, the output of a measurement loop would like something like this:

General output format of a measurement loop.

MXXXX

...output of user commands inside the loop

...(usually the data packages)

*

When the above example script is executed, the output could look like this.

Example output of the above measurement loop.

M0007

PdaDF5CB18n;ba9699F74p,14,218,40

PdaDF5CB18n;ba9699F74p,14,218,40

PdaDF5CB18n;ba9699F74p,14,218,40

PdaDF5CB18n;ba9699F74p,14,218,40

PdaDF5CB18n;ba9699F74p,14,218,40

*

As explained in Chapter 5, Interpreting measurement data packages, daDF5CB18n denotes a variable of type

CELL_SET_POTENTIAL (i.e. the Set control value for WE potential) with a value of 0.099994392 [V]. Due to the

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 13

resolution of the DAC, the actual value is very close, but not exactly equal, to the specified value of 100 mV. The

actual used value is returned by the measurement loop commands so they can be used in futher calculations.

Table 5. Measurement technique ID.

ID Name

0000 Linear Sweep Voltammetry (LSV)

0001 Differential Pulse Voltammetry (DPV)

0002 Square Wave Voltammetry (SWV)

0003 Normal Pulse Voltammetry (NPV)

0004 AC Voltammetry (ACV)

0005 Cyclic Voltammetry (CV)

0007 Chronoamperometry (CA)

0008 Pulsed Amperometric Detection (PAD)

0009 Fast Chronoamperometry (FCA)

000A Chronopotentiometry (CP)

000B Open Circuit Potentiometry (OCP)

000D Electrochemical Impedance Spectroscopy (EIS)

000E Galvanostatic Electrochemical Impedance Spectroscopy (GEIS)

000F Linear Sweep Potentiometery (LSP)

0010 Fast Cyclic Voltammetry (FCV)

0011 Chronoamperometry with alternating mux

0012 Chronopotentiometry with alternating mux

0013 Open Circuit Potentiometry with alternating mux


See Chapter 14, Script command description to see which devices support which

techniques.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 14

Chapter 7. Variable types

Variable types (VarTypes) offer some context to MethodSCRIPT variables. They communicate the type and/or

origin of the variable. They are also used as an argument to some functions to measure a specific type of

variable. For example, when the meas command is used, the type of variable to measure must be passed as an

argument.

A complete list of all defined variable types is listed in Appendix C, Variable types

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 15

Chapter 8. Script argument types

8.1. var

The argument var is a reference to a MethodSCRIPT variable. Variables can be changed during runtime. Before

a variable can be used, it first has to be declared to tell the instrument to reserve some memory. This can be

done using the var command (see Section 14.1, “var”). Variable names must start with a lower case letter ('a' -

'z') and can for the rest consist of more lower case letters, numbers or underscores '_'.

For example, this allocates a few variables:

var a

var aa

var variable_3

var some_descriptive_name

The variable names are translated in the parsing stage so that their length or the amount of variables does not

affect runtime. When choosing variable names, take the following into account: - The parser can only remember

~250 characters for all variable names combined - Lines have limited length (see communication protocol

document), this can be important for commands with multiple parameters.

There can only be at most 26 variables. Variables are preserved during hibernation and exist for the duration of

the script.

Allocate variable with name my_number

var my_number

Store PI in it

store_var my_number 3141m ja

Send the content of var my_number to the user

pck_start

 pck_add my_number

pck_end

8.2. array

For storing more than one element, arrays can be used. This can be used with for example I2C data, fast

techniques or generic measurements. Like variables, arrays have to be defined before they can be used (see

Section 14.3, “array”). Interaction with arrays happens via their reference (just like variables). Arrays and variables

denote distinct types, and cannot generally be substituted for one another in command arguments.

An example of defining an array, filling it with (squared) numbers and printing the content:

var temp

var i

store_var i 0i ja

Define our array with size 10

array list_of_numbers 10i

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 16

#

Fill the array

#

loop i < 10

 copy_var i temp

 mul_var temp temp

 array_set list_of_numbers i temp

 add_var i 1i

endloop

#

Print the content to the user

#

store_var i 0i ja

loop i < 10

 array_get list_of_numbers i temp

 pck_start

 pck_add i

 pck_add temp

 pck_end

 add_var i 1i

endloop

Table 6. Total storage for array elements

Instrument Max array elements

ESPico 4096

EmStat4 50000


On the EmStat Pico, the contents of arrays are not preserved during hibernate, so they may

contain random data afterwards.

8.2.1. Array Access Syntax

Array elements may be accessed with square bracket notation. Elements are zero-indexed, and the value used

to index the array must be an integer (either an integer literal or an integer variable). Array accesses may not be

nested - i.e. the index may not also be an array element.

An array element accessed in this way may be used in lieu of ordinary variables in command arguments,

wherever a variable would be accepted.

array a 100i # Make the 100-element array "a"

...

The initialisation of "a"s values is omitted

...

Allowed:

The 11th element will be used as the argument.

set_e a[10i]

#

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 17

The 12th element will be used as the argument.

var x

store_var x 11i aa

set_e a[x]

#

Write out all the items in the array

var i

store_var i 0i aa

loop i < 100

 send_string f"{a[i]}"

 add_var i 1i

endloop

#

Not allowed:

"set_e" takes a variable, not an array.

set_e a

#

Omitting the "i" after "10" makes it a float,

but indices must be integers.

set_e a[10]

#

Array accesses may not be nested.

set_e a[a[0i]]

8.3. literal

A literal is a constant value argument, it cannot change during runtime.

8.4. VarType

See Chapter 7, Variable types.

8.5. integer types (uint8, uint16, uint32)

These are integer constants, these cannot be changed and do not accept SI prefixes. Minimum and maximum

values for these variables are as follows:

Table 7. Data types

Variable Min Max

uint8 0 255

uint16 0 65,535

uint32 0 4,294,967,295

8.6. condition expressions

Condition expressions are used in the MethodSCRIPT commands if , elseif and loop . A condition expression

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 18

always consists of an operator with two operands, in the form operand1 operator operand2 , for example i <
10 . The operators and operands must be separated by at least one space or tab. Both operands can be either a

MethodSCRIPT variable or an (integer or floating-point) literal. The following operators are supported:

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 19

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

& Bitwise AND

| Bitwise OR

Notes:

• The comparison operators (== , != , > , >= , < , <=) support integer and floating-point numbers. If any of the

operands is a floating-point number, the other operand is converted to floating-point if neccesary.

• The result of any comparison with NaN (not-a-number) is always false.

• The bitwise operators (& and |) only support integer numbers.

• For bitwise operators, the condition is true if (and only if) the result of the bitwise operation is non-zero.

• For unsupported operations (i.e. a bitwise operation on a floating-point number), the condition is always

false.



Beware of unexpected results due to rounding errors when using floating-point numbers. For

example, the expression 100000001 == 99999999i is true, because the integer number

99999999i will be converted to floating-point format. In this case, both floating-point

numbers are rounded to 100000000 and consequently the comparison evaluates to true.

However, the expression 100000001i == 99999999i is false, since both operands are

integers, which are not rounded.


Do not forget to add the i suffix for integer literals (see Section 4.2, “Script command

variables”) when using bitwise operators. For example, the condition i & 1 will always be

false, because 1 is a floating-point number, and bitwise operations on floating-numbers are

not supported. However, the condition i & 1i will be true if bit 0 of variable i is set.

8.7. string

A sequence of characters, i.e. a piece of text. Strings are enclosed in double quotes, e.g. "example string" .

Strings may only consist of printable ASCII characters (ASCII code 32–126), excluding the quotation mark ("),

since that is used as delimiter.

In MethodSCRIPT, strings are always literals (constants). There are no commands to store or modify strings.

8.7.1. Interpolated strings

MethodSCRIPT does support limited string interpolation, allowing the values of variables to be included within a

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 20

string.

Interpolated strings are denoted by the letter f immediately preceding the opening quotation mark. Variables

that are to be included in the string are surrounded by curly braces, e.g. {varname} . Curly braces that do not

contain a valid variable name will cause an error.

The following example demonstrates how to print the value of a MethodSCRIPT variable:

var x

store_var x 10i ja

send_string f"x = {x}"

This will print the string x = 10 .

A backslash (\) may be used to escape the following character, ensuring that it is included verbatim. The

backslash itself will not be included in the output string.

Modifying the example above:

var x

store_var x 10i ja

send_string f"x = \{x}"

This will print the string x = {x} since the backslash escaped the opening curly brace, causing it to be included

as-is rather than being interpolated.

If a backslash is required in the outputted string, write it as a double backslash (\\). The first backslash will

escape the second, causing it to appear verbatim in the output:

var x

store_var x 10i ja

send_string f"x = {x} and then a backslash \\"

This will print the string x = 10 and then a backslash \ .

8.8. Optional arguments

Some commands can have optional arguments to extend their functionality. For example most techniques

support the use of a second working electrode (bipot or poly_we). See Chapter 9, Optional arguments for

detailed information.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 21

Chapter 9. Optional arguments

Optional arguments are added after the last mandatory argument. The format is cmd_name(arg1 arg2 arg3 ..) .

9.1. poly_we

Measure a current on a secondary WE. This secondary WE uses the CE and RE of the main WE, but can be

offset in potential from the main WE or RE. WE’s that are used as poly WE must be configured as such using

the command set_pgstat_mode 5 for the channel the WE belongs to.

Arguments

Name Type Description

Channel uint8 Channel of the additional working electrode.

Output current var [out] Output variable to store the measured current in.

The following code example performs an LSV measurement and sends a data packet for every iteration. The

data packet contains the set potential (p), the measured current of the main WE (c) and the measured current of

the secondary WE (b). The LSV performs a potential scan from -500 mV to +500 mV with steps of 10 mV at a

rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per second.

declare variable for output potential

var p

declare variable for output current of main WE

var c

declare variable for output current of secondary WE

var b

enable bipot on ch 1

set_pgstat_chan 1

set the selected channel to bipot mode

set_pgstat_mode 5

set bp mode to offset or constant

set_poly_we_mode 1

set offset or constant voltage

set_e 100m

set the current-range of the secondary WE

set_range ba 1u

switch back to do actual measurement on ch 0

set_pgstat_chan 0

set the main WE channel to low speed mode

set_pgstat_mode 2

set_range ba 1u

set_range_minmax da -500m 500m

set_max_bandwidth 500

set_e -500m

cell_on

wait 1

LSV measurement using channel 0 as WE1 and channel 1 as WE2

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 22

WE2 current is stored in var b

meas_loop_lsv p c -500m 500m 10m 100m poly_we(1 b)

 pck_start

 pck_add p

 pck_add c

 pck_add b

 pck_end

endloop

cell_off

9.2. nscans

Perform multiple potential sweeps (scans) during a Cyclic Voltammetry measurement, instead of sweeping only

once. When nscans is used, the cycle number will be printed at the start of every sweep. The number is

formatted as Cnnnn where nnnn is an integer ranging from 0000 to 9999 . A special character (-) is printed at the

end of every cycle. For the rest the output is the same as when nscans omitted. See output example below.

Arguments

Name Type Description

Number of scans uint16 The number of scans to perform (≥ 1).

This example CV performs a potential scan from 0 V to -500 mV to 500 mV and back to 0 V with steps of 10

mV at a rate of 1 V/s. Because of the nscans(2) parameter, this pattern is repeated two times.

meas_loop_cv p c 0 -500m 500m 10m 1 nscans(2)

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Output for example with nscans 2

M0005

C0000

Pda8000000 ;ba9AE0ABCf,14,212,40

...

Pda899FAA9n;ba8100E0Dp,14,212,40

-

C0001

Pda8000000 ;ba9AE0ABCf,14,212,40

...

Pda899FAA9n;ba8100E0Dp,14,212,40

-

*

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 23

9.3. nscans_avg

Average the measured currents of multiple scans in a Cyclic Voltammetry measurement, keeping the same array

length as when having only one scan.

Arguments

Name Type Description

Number of scans uint16 The number of scans to average (1–30000).

For example, the following meas_fast_cv command will perform 7 scans which are averaged together. The

result is stored in arrays p and i and printed using a loop.

Example

meas_fast_cv p i c 0 -100m 100m 100m 10 nscans_avg(7)

store_var x 0i ja

loop x < c

 pck_start meta_msk(0x00)

 # Add set potential to packet

 array_get p x t

 pck_add t

 # Add measured current to packet

 array_get i x t

 pck_add t

 pck_end

 add_var x 1i

endloop

The output contains 5 points, just like a scan without averaging would. In contrast with a regular scan without

nscans_avg , the currents are averages over 7 scans.

Output

L

da8000000 ;ba801B85Cp

da20A34E8n;ba20C37E0p

da8000000 ;ba801B85Cp

daDF5CB18n;ba8018739n

da8000000 ;ba801DD0Fp

+

9.4. nscans_equil

Perform n amount of scans without measuring current, before the normal measured scans.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 24

Arguments

Name Type Description

Number of scans uint16 The number of scans to perform during the equilibration phase.

The following example illustrates the use of nscans_equil performing 3 equilibration scans. Output format is the

same as without this optional parameter.

Example

meas_fast_cv p i c 0 -100m 100m 100m 10 nscans_equil(3)

9.5. meta_msk

Enable or disable metadata packages sent with the pck_add command. This can be used to reduce the amount

of data sent by disabling packages, making it possible to achieve higher data rates.

Arguments

Name Type Description

Metadata mask uint8 A bitwise mask used to enable/disable types of metadata packages.

0 = All metadata disabled

1 = Enable datapoint status package

2 = Enable current range package

Values can be added to enable multiple types of metadata.

This example measures a current and then sends two packages containing the measured current. The first

package will include the current range and status metadata. The second package will only include the status

metadata.

var a

set_pgstat_mode 2

meas 100m a ba

pck_start meta_msk(0x03)

pck_add a

pck_end

pck_start meta_msk(0x01)

pck_add a

pck_end

9.6. eis_tdd

The eis_tdd optional parameter enables the transfer of time-domain data (TDD) for an EIS, GEIS, or MSEIS

measurement.

 This is not supported on the EmStat Pico.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 25

Arguments

Name Type Description

Potential signal TDD array [out] The acquired time-domain data of the potential signal of one EIS

iteration or MSEIS measurement. Minimum size required is 4096.

Current signal TDD array [out] The acquired time-domain data of the current signal of one EIS

iteration. Minimum size required is 4096.

Number of samples var [out] The number of acquired data points (samples) for both signals.

Sampling frequency var [out] The frequency at which the data points are acquired for both signals.

Averaging mode uint16 Averaging mode. Future option, default = 0.

The following example performs an EIS measurement and sends the EIS result data packets followed by the

time-domain data for every iteration.

var h

var r

var j

var i

var n

var s

var d

var g

array u 4096

array c 4096

set_pgstat_chan 0

set_pgstat_mode 3

set_max_bandwidth 200k

set_range_minmax da 0 0

set_range ba 59m

set_autoranging ba 59n 59m

cell_on

meas_loop_eis h r j 50m 200k 1 11 0 eis_tdd(u c n s 0)

 pck_start

 pck_add h

 pck_add r

 pck_add j

 pck_add s

 pck_end

 store_var i 0i ja

 loop i < n

 array_get u i d

 array_get c i g

 pck_start

 pck_add d

 pck_add g

 pck_end

 add_var i 1i

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 26

 endloop

endloop

on_finished:

cell_off

9.7. eis_opt

The eis_opt optional parameter enables the user to control the acquisition properties for an EIS or GEIS

measurement.

 This is not supported on the EmStat Pico.

Arguments

Name Type Description

Minimum acquisition

time

var / literal

(float)

The minimum time for acquisition (for frequencies > Min.Cycles /

frequency). Must be a positive value. Setting the value below 1 ms will

enable Fast EIS. Fast EIS is the abillity to perform EIS measurements as

fast as possible (up to 1 ms interval times) at a single frequency

between 10 kHz and 200 kHz.

Minimum nr. of

cycles to acquire

uint8 The minimum number of cycles to acquire (for frequencies < 1 /

Min.Acq.Time). Must be a positive and non-zero value.

This example performs an EIS measurement with 10 ms minimal acquisition time and minimal 1 cycle to acquire.

var h

var r

var j

var i

var n

var s

var d

var g

set_pgstat_chan 0

set_pgstat_mode 3

set_max_bandwidth 200k

set_range_minmax da 0 0

set_range ba 59m

set_autoranging ba 59n 59m

cell_on

meas_loop_eis h r j 50m 200k 1 11 0 eis_opt(10m 1)

 pck_start

 pck_add h

 pck_add r

 pck_add j

 pck_add s

 pck_end

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 27

 store_var i 0i ja

 loop i < n

 array_get u i d

 array_get c i g

 pck_start

 pck_add d

 pck_add g

 pck_end

 add_var i 1i

 endloop

endloop

on_finished:

cell_off

9.8. eis_acdc

The eis_acdc optional parameter returns the AC and DC information for the potential and current signal.

 This is not supported on the EmStat Pico.

Arguments

Name Type Description

E_AC var [out]

(float)

AC potential (in volts).

E_DC var [out]

(float)

DC potential (in volts).

I_AC var [out]

(float)

AC current (in amperes).

I_DC var [out]

(float)

DC current (in amperes).

Perform an EIS measurement and send the EIS result data packets followed by the E_AC, E_DC, I_AC, I_DC

values.

var h

var r

var j

var i

var n

var s

var d

var g

var u

var c

set_pgstat_chan 0

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 28

set_pgstat_mode 3

set_max_bandwidth 200k

set_range_minmax da 0 0

set_range ba 59m

set_autoranging ba 59n 59m

cell_on

meas_loop_eis h r j 50m 200k 1 11 0 eis_acdc(u c n s)

 pck_start

 # add frequency, Z-real, Z-imaginary to the data packet

 pck_add h

 pck_add r

 pck_add j

 # add the E_AC,E_DC,I_AC,I_DC values to the data packet

 pck_add u

 pck_add c

 pck_add n

 pck_add s

 pck_end

endloop

on_finished:

cell_off

9.9. ms_eis_acdc

The ms_eis_acdc optional parameter returns the AC and DC information for the E and I signal of a MSEIS

measurement. The user should make sure that the E_AC and I_AC argument are an array of sufficient length.

Table 8. Arguments

Name Type Description

E_AC array [out]

(float)

E signal AC value for each harmonic in volts

E_DC var [out]

(float)

E signal DC value in volts

I_AC array [out]

(float)

I signal AC value for each harmonic in amperes

I_DC var [out]

(float)

I signal DC value in amperes

Perform an MSEIS measurement and send the MSEIS result data packets followed by the E_AC and I_AC

arrays, and finally the E_DC and I_DC values.

array f 15

array r 15

array j 15

var i

var n

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 29

var s

var d

var g

var k

array u 15

array c 15

set_pgstat_chan 0

set_pgstat_mode 3

set_max_bandwidth 200k

set_range_minmax da 0 0

set_range ba 59m

set_autoranging ba 59n 59m

cell_on

meas_ms_eis f r j 10m 10 180m 2 ms_eis_acdc(u n c s)

First send the MSEIS results

store_var i 0i ja

loop i < 15

pck_start

array_get f i d

array_get r i g

array_get j i k

pck_add d

pck_add g

pck_add k

pck_end

add_var i 1i

endloop

Send AC voltage and current data for each harmonic

store_var i 0i ja

loop i < 15

pck_start

array_get u i d

array_get c i g

pck_add d

pck_add g

pck_end

add_var i 1i

endloop

Send the DC voltage and current data

store_var i 0i ja

loop i < 1

pck_start

pck_add n

pck_add s

pck_end

add_var i 1i

endloop

cell_off

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 30

Chapter 10. Tags

A script can have optional tags (or labels) to direct the execution flow in case of an event like aborting a running

script.

10.1. on_finished:

The commands after this this tag will be executed when the script is aborted, or when normal script execution

reaches the tag. A script can be aborted either by the MethodSCRIPT abort command, or by the abort (Z)

command from the communication protocol. Note that the commands after the on_finished: tag are not

executed if a script error has occurred, as no further commands are executed in this case.

The following example demonstrates the program flow when using abort and on_finished: in a script:

var i

store_var i 0i ja

loop i < 10i

 send_string "before if"

 if i == 2i

 send_string "abort"

 abort

 endif

 send_string "after if"

 add_var i 1i

endloop

on_finished:

send_string "finished"

Output:

L

Tbefore if

Tafter if

Tbefore if

Tafter if

Tbefore if

Tabort

+

Tfinished

The following scripts illustrates the use of the on_finished: tag in a more realistic use case. In this example, the

cell will be switched off when the EIS loop is finished or when the script is aborted during the EIS loop.

first configure channel and PGstat mode (not shown in this example)

...

cell_on

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 31

meas_loop_eis h r j 10m 200k 100 17 0

 pck_start

 pck_add h

 pck_add r

 pck_add j

 pck_end

endloop

on_finished:

cell_off

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 32

Chapter 11. Error handling

Errors can occur that prevent the execution of the MethodSCRIPT. These errors can occur either during the

parsing of the script or during the execution of the script (runtime). If the error occurs during parsing, the line and

column number where the error occurred will be reported. During runtime, only the line number will be reported.

A command that returns an error will not return an extra newline \n after the newline of the error message.

Parsing error format

!XXXX: Line L, Col C\n

Runtime error format

!XXXX: Line L\n

Where: XXXX = the error code, refer to Appendix A, Error codes for a complete list of error codes. L = Line nr,

starting at 1

C = Line character nr, starting at 1


Up to MethodSCRIPT v1.3, lines containing only comments were not counted for runtime

errors. Since MethodSCRIPT v1.4, comment lines are also counted, so the line numbers do

reflect the actual line number of the script, even during runtime.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 33

Chapter 12. PGStat modes

PGStat modes (Potentiostat / Galvanostat modes) are device-wide configurations that affect which hardware is

used during measurements. This is necessary for devices that have a choice between multiple measurement

hardware options with different properties. PGStat modes are device-specific, more information can be found in

Section B.1, “PGStat mode properties”.

12.1. PGStat mode off

All measurement hardware is turned off to save power, no measurements can be done.

12.2. PGStat mode low speed

The hardware configuration that has the best properties for low speed measurements is picked. Usually this

means it is less sensitive to high frequency noise and consumes less power. However the maximum bandwidth

is limited.

12.3. PGStat mode high speed

The hardware configuration that has the best properties for high speed measurements is used. In general, this

will consume more power and be more sensitive to noise. However, it will allow higher frequency measurements

to be done.

12.4. PGStat mode max range

This mode uses a hardware configuration having the highest possible potential range by combining the high and

low speed mode In general, this will consume more power and be more sensitive to noise The bandwidth is

limited to the bandwidth of the low speed mode.

12.5. PGStat mode poly_we

This mode sets the channel up to be used as an extra WE electrode that applies a potential relative to the WE of

the main channel. This is also known as a bipot or a poly WE. This mode uses the RE and CE of the main

channel, and does not use the RE and CE of the poly WE channel.

12.6. PGStat mode galvanostatic

This mode is used to control the applied current, rather than the applied potential. This mode is required for all

galvanostatic techniques and commands.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 34

Chapter 13. Script command summary

13.1. Command summary

The following table lists all MethodSCRIPT commands, in which version they are introduced and which

instruments are supported. In chapter Chapter 14, Script command description these commands are described

in detail.

Table 9. MethodSCRIPT command summary

MethodSCRIPT command version EmStat

Pico

EmStat4 Description

var 1.1 Y Y Declare a variable.

store_var 1.1 Y Y Store a value in a variable.

array 1.2 Y Y Declare an array.

array_set 1.2 Y Y Set a variable at the specified array index.

array_get 1.2 Y Y Get a variable from the specified array

index.

copy_var 1.1 Y Y Copy a variable.

add_var 1.1 Y Y Add a value to a variable.

sub_var 1.1 Y Y Subtract a value from a variable.

mul_var 1.1 Y Y Multiply a variable.

div_var 1.1 Y Y Divide a variable.

mod_var 1.5 - Y Perform a modulo operation on a variable.

bit_and_var 1.3 Y Y Perform a bitwise AND operation.

bit_or_var 1.3 Y Y Perform a bitwise OR operation.

bit_xor_var 1.3 Y Y Perform a bitwise XOR operation

bit_lsl_var 1.3 Y Y Logical Shift Left variable.

bit_lsr_var 1.3 Y Y Logical Shift Right variable.

bit_inv_var 1.3 Y Y Bitwise invert a variable.

int_to_float 1.3 Y Y Change the data type from int to float.

float_to_int 1.3 Y Y Change the data type from float to int.

set_e 1.1 Y Y Apply a variable or literal as the WE

potential.

set_i 1.3 N Y Apply a variable or literal as the WE current

in galvanostatic mode.

wait 1.1 Y Y Wait for the specified amount of time.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 35

MethodSCRIPT command version EmStat

Pico

EmStat4 Description

set_int 1.2 Y Y Configure the interval for the await_int
command.

await_int 1.2 Y Y Wait for the next interval.

loop 1.1 Y Y Repeat a block of commands while some

condition is fullfilled.

endloop 1.1 Y Y Signal the end of a loop.

breakloop 1.2 Y Y Break out of the current loop.

if, elseif, else, endif 1.2 Y Y Conditional statements allow the

conditional execution of commands.

meas 1.1 Y Y Measure a data point of the specified type

and store the result as a variable.

meas_loop_lsv 1.1 Y Y Perform a Linear Sweep Voltammetry (LSV)

measurement.

meas_loop_acv 1.5 - Y Perform a AC Voltammetry (ACV)

measurement.

meas_loop_lsp 1.3 N Y Perform a Linear Sweep Potentiometry

(LSP) measurement.

meas_loop_cv 1.1 Y Y Perform a Cyclic Voltammetry (CV)

measurement.

meas_fast_cv 1.4 - Y Perform a Fast Cyclic Voltammetry (FCV)

measurement.

meas_loop_dpv 1.1 Y Y Perform a Differential Pulse Voltammetry

(DPV) measurement.

meas_loop_swv 1.1 Y Y Perform a Square Wave Voltammetry

(SWV) measurement.

meas_loop_npv 1.1 Y Y Perform a Normal Pulse Voltammetry (NPV)

measurement.

meas_loop_ca 1.1 Y Y Perform a Chronoamperometry (CA)

measurement.

meas_loop_ca_alt_mux 1.5 - Y Perform a Chronoamperometry (CA)

measurement in alternating multiplexer

mode.

meas_fast_ca 1.5 - Y Perform a Fast Chronoamperometry (FCA)

measurement.

meas_loop_cp 1.3 N Y Perform a Chronopotentiometry (CP)

measurement.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 36

MethodSCRIPT command version EmStat

Pico

EmStat4 Description

meas_loop_cp_alt_mux 1.5 - Y Perform a Chronopotentiometry (CP)

measurement in alternating multiplexer

mode.

meas_loop_pad 1.1 Y Y Perform a Pulsed Amperometric Detection

(PAD) measurement.

meas_loop_ocp 1.1 Y Y Perform an Open Circuit Potentiometry

(OCP) measurement.

meas_loop_ocp_alt_mux 1.5 - Y Perform an Open Circuit Potentiometry

(OCP) measurement in alternating

multiplexer mode.

meas_loop_eis 1.1 Y Y Perform a (potentiostatic) Electrochemical

Impedance Spectroscopy (EIS)

measurement.

meas_loop_geis 1.3 N Y Perform a Galvanostatic Electrochemical

Impedance Spectroscopy (GEIS)

measurement.

meas_ms_eis 1.5 - Y Perform a Multi-Sine EIS (MSEIS)

measurement.

set_autoranging 1.1 Y Y Configure the autoranging for all

meas_loop_* functions.

pck_start 1.1 Y Y Start a measurement data packet.

pck_add 1.1 Y Y Add a variable (or literal) to the

measurement data package previously

started with pck_start .

pck_end 1.1 Y Y Send the measurement data package

previously started with pck_start ,

containing all variables added using

pck_add .

set_max_bandwidth 1.1 Y Y Set maximum bandwidth of the signal

being measured.

set_cr (deprecated) 1.1 Y Y Set the current range for the given

maximum current.

set_range 1.3 Y Y Set the expected maximum absolute

current or potential for a given VarType.

set_range_minmax 1.3 Y Y Set the expected minimum and maximum

current or potential for a given VarType.

cell_on 1.1 Y Y Turn the cell on. This enables the WE

potential or current regulation.

cell_off 1.1 Y Y Turn the cell off.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 37

MethodSCRIPT command version EmStat

Pico

EmStat4 Description

set_pgstat_mode 1.1 Y Y Set the PGStat hardware configuration to

be used for measurements.

send_string 1.1 Y Y Send an arbitrary string as output of the

MethodSCRIPT.

set_gpio_cfg 1.2 Y Y Set the GPIO pin configuration.

set_gpio_pullup 1.2 Y Y Enable or disable GPIO pin pull-ups.

set_gpio 1.1 Y Y Set the GPIO output values.

get_gpio 1.2 Y Y Get the GPIO input pin values.

set_gpio_msk 1.4 - Y Write to the GPIO pins indicated by the

mask.

get_gpio_msk 1.4 - Y Get the GPIO input pin values with a mask.

set_pot_range (deprecated) 1.2 Y Y Set the expected potential range for the

following measurements.

set_pgstat_chan 1.1 Y Y Select a PGStat channel.

set_poly_we_mode 1.1 Y N Select the mode of the additional working

electrode.

get_time 1.2 Y Y Get the time since device startup in

seconds.

file_open 1.2 Y Y Open a file on the persistent storage.

file_close 1.2 Y Y Close the currently open file.

set_script_output 1.2 Y Y Set the output mode for the script.

hibernate 1.2 Y Y Put the device in hibernate mode.

i2c_config 1.2 Y Y Setup I²C configuration.

i2c_write_byte 1.2 Y Y Transmit one byte to an I²C slave device.

i2c_read_byte 1.2 Y Y Receive one byte from an I²C slave device.

i2c_write 1.2 Y Y Write one or more bytes to an I²C slave

device.

i2c_read 1.2 Y Y Read one or more bytes from an I²C slave

device.

i2c_write_read 1.2 Y Y Write to and read from an I²C slave device.

abort 1.2 Y Y Abort the current script.

set_scan_dir 1.5 - Y Reverse the direction of the CV scan.

timer_start 1.2 Y Y Start the timer.

timer_get 1.2 Y Y Get the timer value.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 38

MethodSCRIPT command version EmStat

Pico

EmStat4 Description

set_channel_sync 1.3 N Y Enable or disable channel synchronization.

set_acquisition_frac 1.3 Y Y Set the fraction of the iteration time to use

for measurement.

set_acquisition_frac_autoadjust 1.4 - Y Filter out the given frequency by

automatically adjusting acquisition times.

set_ir_comp 1.5 - Y Set resistance to be compensated by iR

compensation.

set_e_aux 1.4 - Y Set the voltage on the AUX DAC.

mux_config 1.4 - Y Configure a multiplexer to use in

MethodSCRIPT.

mux_get_channel_count 1.4 - Y Get the number of channels on the

multiplexer setup.

mux_set_channel 1.4 - Y Select channel on the multiplexer.

alter_vartype 1.5 - Y Alter the VarType of a variable.

notify_led 1.5 - Y Notify the user of a user-defined event,

using the LED.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 39

13.2. MethodSCRIPT version on instruments

The below table lists the relationship between the instrument’s firmware version and the MethodSCRIPT version.

Table 10. MethodSCRIPT and instrument firmware versions

MethodSCRIPT EmStatPico EmStat4

1.0 v1.0 -

1.1 v1.1 -

1.2 v1.2 v1.0

1.3 v1.3 v1.1

1.4 - v1.2

1.5 - v1.3

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 40

Chapter 14. Script command description

14.1. var

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Declare a variable. All MethodSCRIPT variables must be declared before use. When a variable is declared, it is

initialized with the floating-point value 0 and VarType aa . For details on naming and limitations see Chapter 8,

Script argument types.

Arguments

Name Type Description

Variable name var Variable to declare.

Example

Define two variables with names foo and bar

var foo

var bar

14.2. store_var

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Store a value in a variable.

Arguments

Name Type Description

Variable name var [out]

(int, float)

Variable to store value into.

Value literal

(int, float)

Literal value to store in the variable.

Variable Type VarType The type identifier for this value, see Chapter 7, Variable types.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 41

Example

Store the value 200 as a floating-point number in the variable foo , with VarType VT_MISC_GENERIC1 (ja).

store_var foo 200 ja

Same as above, but now as an integer value instead of floating-point value.

store_var foo 200i ja

14.3. array

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Declare an array. Arrays can store multiple variables. All arrays must be declared before use. The name may not

be used by another array or variable. For details on naming and limitations see Chapter 8, Script argument

types.

Arrays have a fixed size and their memory is allocated when the command is first run. The minimum size is 1

and the maximum size is determined by the available memory on the device (see Table 6, “Total storage for

array elements”). If there is not enough memory available, an error is generated.

It is allowed to declare the same array multiple times (with the same name). This makes it possible to declare an

array inside a loop. However, when a variable is declared multiple times, the size must be the same, otherwise

an error is generated. When redeclaring an array, the memory is reused.

Note that array memory is not freed until the end of the MethodSCRIPT, so it is best to avoid declaring many

large arrays.

When this command is executed, all values in the array are initialized with the floating-point number 0.

Arrays are necessary for some MethodSCRIPT commands, but can also be used in general to store multiple

variables, for example inside loops. Values can be written using array_set and read using array_get . Arrays

use zero-based indexing, so the first element has index 0, the second element has index 1, and so on.

Arguments

Name Type Description

Variable name array Array reference.

Array size uint32 The amount of variables this array can hold.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 42

Example

Declare array with name foo_bar_baz and size 10.

array foo_bar_baz 10i

 variables and arrays with the same name cannot exist in the same script

14.4. array_set

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Set a variable at the specified array index.

Arguments

Name Type Description

Array variable array Array reference.

Array index var / literal

(int)

The index in the array to store the value to.

Variable var / literal

(int, float)

The variable to store in the array. If a literal is used, the VarType will be set

to aa (UNKNOWN).

Example

The following example declares an array foobar with 6 elements, and writes the value 0.02 to the last element

(the variable at index 5).

array foobar 6i

array_set foobar 5i 20m

To set the VarType as well, first define another variable, then store that variable in the array. The following

example is similar to the example above, but also sets the VarType to ja .

array a 6i

var t

store_var t 20m ja

array_set a 5i t

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 43

14.5. array_get

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Get a variable from the specified array index.

Arguments

Name Type Description

Array variable array Array reference.

Array index var / literal

(int)

The index in the array to get the value from.

Variable var [out]

(int, float)

The output variable to store the data from the array in.

Example

Get the value in the array at index 5 and store it in variable b .

array_get a 5i b

14.6. copy_var

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Copy a variable. Copying includes the value, VarType and any metadata stored in a variable.

Arguments

Name Type Description

Source variable var

(int, float)

Variable to copy.

Destination

variable

var [out]

(int, float)

Variable to overwrite.

Example

Copies the variable x to y .

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 44

copy_var x y

14.7. add_var

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Add a value to a variable.

The value of arg2 is added to the variable specified by arg1 . Both arguments must have the same data type

(both int or both float). The VarType and metadata of the variable(s) are not changed.

Arguments

Name Type Description

arg1 var [in/out]

(int, float)

Variable to be updated.

arg2 var / literal

(int, float)
Value to add to arg1 .

Example

Add 1 to variable x and store the result in x .

add_var x 1

14.8. sub_var

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Subtract a value from a variable.

The value of arg2 is subtracted from the variable specified by arg1 . Both arguments must have the same data

type (both int or both float). The VarType and metadata of the variable(s) are not changed.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 45

Arguments

Name Type Description

arg1 var [in/out]

(int, float)

Variable to be updated.

arg2 var / literal

(int, float)

Value to subtract from arg1.

Example

Subtract 1 from the variable x and store the result in x .

sub_var x 1

14.9. mul_var

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Multiply a variable.

The value of arg1 is multiplied with the value of arg2 . Both arguments must have the same data type (both int
or both float). The VarType and metadata of the variable(s) are not changed.

Arguments

Name Type Description

arg1 var [in/out]

(int, float)

The variable to be multiplied.

arg2 var / literal

(int, float)

The value to multiply with.

Example

Multiply the variable x with 1.5 and stores the result in x .

mul_var x 1500m

14.10. div_var

MethodSCRIPT 1.1

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 46

EmStat Pico Y

EmStat4 Y

Divide a variable.

The value of arg1 is divided by the value of arg2 . Both arguments must have the same data type (both int or

both float). The VarType and metadata of the variable(s) are not changed.


A floating-point division by zero results in Not-a-Number. An integer division by zero is not

allowed and results in an error.

Arguments

Name Type Description

arg1 var [in/out]

(int, float)

The dividend (as input); the result (quotient) as output.

arg2 var / literal

(int, float)

The divisor.

Example

Divide the variable x by 1.5 and stores the result in x .

div_var x 1500m

14.11. mod_var

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Perform a modulo operation on a variable.

Calculate the remainder of dividing arg1 by arg2 and store the result in arg1 . Both arguments must be integer

variables. The VarType and metadata of the variable(s) are not changed.

Arguments

Name Type Description

arg1 var [in/out]

(int)

The variable to be divided.

arg2 var / literal

(int)

The value to divide by.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 47

Example

Calculate the remainder of dividing the variable a by 4 and store the result in a .

mod_var a 4i

14.12. bit_and_var

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Perform a bitwise AND operation.

The value of arg2 is bitwise ANDed to the variable specified by arg1 . The VarType and metadata of the

variable(s) are not changed.

Arguments

Name Type Description

arg1 var [in/out]

(int)

Argument 1 of the bit operation, and also the output variable.

arg2 var / literal

(int)

Argument 2 of the bit operation.

Example

Perform a bitwise AND operation on t and 0x5555 and store it to t .

bit_and_var t 0x5555

14.13. bit_or_var

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Perform a bitwise OR operation.

The value of arg2 is bitwise ORed to the variable specified by arg1 . The VarType and metadata of the variable(s)

are not changed.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 48

Arguments

Name Type Description

arg1 var [in/out]

(int)

Argument 1 of the bit operation, and also the output variable.

arg2 var / literal

(int)

Argument 2 of the bit operation.

Example

Perform a bitwise OR operation on t and 0x5555 and store it to t .

bit_or_var t 0x5555

14.14. bit_xor_var

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Perform a bitwise XOR operation

The value of arg2 is bitwise XORed to the variable specified by arg1 . The VarType and metadata of the

variable(s) are not changed.

Arguments

Name Type Description

arg1 var [in/out]

(int)

Argument 1 of the bit operation; also the output variable.

arg2 var / literal

(int)

Argument 2 of the bit operation.

Example

Perform a bitwise XOR operation on t and 0x5555 and store it to t .

bit_xor_var t 0x5555

14.15. bit_lsl_var

MethodSCRIPT 1.3

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 49

EmStat Pico Y

EmStat4 Y

Logical Shift Left variable.

Shift the variable specified by the first argument to the left by the number of bit positions specified in the second

argument. The VarType and metadata of the variable(s) are not changed.

Arguments

Name Type Description

arg1 var [in/out]

(int)

The variable to shift.

arg2 var / literal

(int)

Number of bits to shift.

Example

Perform a bitwise shift 4 places to the left on t and store it to t .

bit_lsl_var t 4i

14.16. bit_lsr_var

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Logical Shift Right variable.

Shift the variable specified by the first argument to the right by the number of bit positions specified in the

second argument. The VarType and metadata of the variable(s) are not changed.

Arguments

Name Type Description

arg1 var [in/out]

(int)

The variable to shift.

arg2 var / literal

(int)

Number of bits to shift.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 50

Example

Perform a bitwise shift 4 places to the right on t and store it to t .

bit_lsr_var t 4i

14.17. bit_inv_var

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Bitwise invert a variable.

 The sign bit is also inverted by this operation.

Arguments

Name Type Description

Variable var [in/out]

(int)

The variable to invert, the result is stored here.

Example

Perform a bitwise inverse operation on t .

bit_inv_var t

14.18. int_to_float

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Change the data type from int to float. Because of the nature of floats, this command will round to the nearest

value. The VarType and metadata of the variable(s) are not changed.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 51

Arguments

Name Type Description

Variable var [in/out]

(int)

Variable to convert.

Example

Convert variable a to float.

int_to_float a

14.19. float_to_int

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Change the data type from float to int. When changing the data type from floating-point to integer, the fractional

part is discarded, i.e., the value is truncated towards zero. If the value is outside the range of an int32 variable,

the result is undefined. The VarType and metadata of the variable(s) are not changed.

Arguments

Name Type Description

Variable var [in/out]

(float)

Variable to convert.

Example

Convert variable a to int.

float_to_int a

14.20. set_e

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Apply a variable or literal as the WE potential. The potential is limited by the potential range of the currently active

PGStat Mode see Section B.1, “PGStat mode properties”.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 52

Arguments

Name Type Description

Potential var / literal

(float)

The WE potential to apply in Volts.

Example

Set WE potential to 0.1 V.

set_e 100m

14.21. set_i

MethodSCRIPT 1.3

EmStat Pico N

EmStat4 Y

Apply a variable or literal as the WE current in galvanostatic mode. Applied currents are limited by the selected

CR. It is advised to use the set_range command before calling set_i .

Arguments

Name Type Description

Current var / literal

(float)

The WE current to apply in amperes.

Example

Sets control current value for the galvanostat loop to 0.1 A.

set_range ba 100m

set_i 100m

14.22. wait

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Wait for the specified amount of time.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 53

Arguments

Name Type Description

Time var / literal

(float)

The amount of time to wait in seconds.

Example

Wait 100 milliseconds.

wait 100m

14.23. set_int

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Configure the interval for the await_int command. This also (re)starts the counter for the interval timer.

Arguments

Name Type Description

Interval var / literal

(float)

The interval time in seconds.

Example

Set interval to 100 milliseconds.

set_int 100m

14.24. await_int

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Wait for the next interval. This command allows the use of an asynchronous background timer to synchronize

the script to a certain interval.

Arguments

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 54

-

Example

Set interval to 100 ms. Then execute a loop every 100 ms using await_int to synchronize the start of each loop.

Even though the loop takes a variable amount of time because of the variable wait command, the loop will

execute once every 100 ms.

var t

store_var t 0 aa

set_int 100m

loop until wait time (t) is 50 ms

loop t <= 50m

 # wait for next interval of 100ms

 await_int

 # add 10 ms to wait time

 add_var t 10m

 # wait variable amount of time

 wait t

endloop

14.25. loop

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Repeat a block of commands while some condition is fullfilled.

Each time the loop command is executed, the condition expression is evaluated. If the result is true, the

commands between the loop and the corresponding endloop command are executed. The endloop command

then jumps back to the loop command. If the result of the expression is false, the script continues after the

corresponding endloop command.

For every loop command, there must be exactly one matching endloop command.

Arguments

Name Type Description

Operand 1 var / literal

(int, float)

The left side of the conditional expression.

Operator expression The operator of the conditional expression.

Operand 2 var / literal

(int, float)

The right side of the conditional expression.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 55

Example

Add 1 to variable i until it reaches the value 10.

Note that the code between the loop and endloop commands is indented for readability, but this is not required.

As described in Chapter 3, Script format, whitespace at the start of the line is ignored.

var i

store_var i 0i aa

loop i < 10i

 add_var i 1i

endloop

14.26. endloop

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Signal the end of a loop.

This command is used to end a loop command or any of the measurement loop commands. See the

corresponding commands for more details.

Arguments

-

14.27. breakloop

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Break out of the current loop. The script will continue execution after the next endloop .

Arguments

-

14.28. if, elseif, else, endif

MethodSCRIPT 1.2

EmStat Pico Y

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 56

EmStat4 Y

Conditional statements allow the conditional execution of commands. Every if statement must be terminated

by an endif statement. In between the if and endif statements can be any number of elseif statements

and/or one else statement. Accepts either integer or floating-point variables, but if argument types don’t match,

they are compared as floats.

Arguments for if , elseif commands

Name Type Description

Operand 1 var / literal

(int, float)

The left side of the conditional expression.

Operator expression The operator of the conditional expression. See Section 8.6, “condition

expressions”.

Operand 2 var / literal

(int, float)

The right side of the conditional expression.

Example

One of the send_string commands will be executed, depending on the value of variable a .

if a > 5

 send_string "a is greater than 5"

elseif a >= 3

 send_string "a is less than or equal to 5 but greater than or equal to 3"

else

 send_string "a is less than 3"

endif

14.29. meas

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Measure a data point of the specified type and store the result as a variable. The data point will be averaged for

the specified amount of time at the maximum available sampling rate.

For supported value types of each device, refer to Section B.5, “Supported variable types for meas command”.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 57

Arguments

Name Type Description

Duration var / literal

(float)

The amount of time to spend averaging measured data.

Destination var [out]

(float)

Variable to store the measured data in.

Var type VarType The type of variable to measure, see Chapter 7, Variable types.

Example

Measure the signal with the VarType ba (VT_CURRENT) for 100 ms and store the result in the variable c .

meas 100m c ba

14.30. meas_loop_lsv

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform a Linear Sweep Voltammetry (LSV) measurement. An LSV measurement scans a potential range in

small steps and measures the current at each step. A more detailed explanation on this technique can be found

on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for information about measurement loops in general.

Arguments

Name Type Description

Set potential var [out]

(float)

Output variable to store the set potential for this iteration.

Measured

current

var [out]

(float)

Output variable to store the measured current in.

Begin potential var / literal

(float)

The begin potential for the LSV technique.

End potential var / literal

(float)

The end potential for the LSV technique.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 58

https://www.palmsens.com/knowledgebase-article/linear-sweep-voltammetry-lsv

Name Type Description

Step potential var / literal

(float)

The potential increase for each step. Affects the amount of data points

per second, together with the scan rate. This is an absolute step. The

direction of the scan is determined by "Begin potential" and "End

potential".

Scan rate var / literal

(float)

The scan rate of the LSV technique. This is the speed at which the

applied potential is ramped in V/s. Can only be positive.


The set potential is not measured. The actually applied potential may clip if the set potential

is outside the supported range.

Optional arguments

The following optional arguments are supported:

• poly_we

Example

Perform an LSV measurement and send a data packet for every iteration. The data packet contains the set

potential and measured current. The LSV performs a potential sweep from -500 mV to 500 mV with steps of 10

mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per second.

meas_loop_lsv p c -500m 500m 10m 100m

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

14.31. meas_loop_acv

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Perform a AC Voltammetry (ACV) measurement. In a ACV measurement, a potentialscan is performed with a

superimposed sine wave. At each step, the ac-potential and ac-current are measured and the complex

impedance is calculated.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 59

Arguments

Name Type Description

Output DC-

potential

var [out]

(float)

Output variable to store the measured DC potential for this iteration.

Output DC-

current

var [out]

(float)

Output variable to store the measured DC current for this iteration.

Output AC-

potential

var [out]

(float)

Output variable to store the measured AC potential for this iteration.

Output AC-

current

var [out]

(float)

Output variable to store the measured AC current for this iteration.

Output Z-real var [out]

(float)

Output variable to store the real part of the measured complex

impedance. This field also contains the metadata of the I-signal (current)

Output Z-

imaginary

var [out]

(float)

Output variable to store the imaginary part of the measured complex

impedance. This field also contains the metadata of the E-signal

(potential)

Begin potential var / literal

(float)

The begin potential for the potential scan.

End potential var / literal

(float)

The end potential for the potential scan.

Step potential var / literal

(float)

The potential increase for each step. This is an absolute step that does

not affect the direction of the scan.

Scan rate var / literal

(float)

The scan rate of the ACV technique. This is the speed at which the

applied potential is ramped in V/s. Can only be positive.

Amplitude var / literal

(float)

Sine wave amplitude in RMS voltage.

Frequency var / literal

(float)

Sine wave frequency in Hz. This must be chosen such that 4 cycles at

this frequency fit in each step period. The step period may be calculated

as the step potential divided by the scan rate.

Example

meas_loop_acv dc_pot dc_cur ac_pot ac_cur z_real z_imag -500m 500m 10m 20m 10m 15

 pck_start

 pck_add dc_pot

 pck_add ac_cur

 pck_end

endloop

Perform an ACV measurement and send a data packet for every iteration, with each packet containing the set

potential and AC current.

The ACV performs a potential scan from -500 mV to 500 mV with steps of 10 mV, a scanrate of 20 mV/s and an

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 60

amplitude of 10 mV at 15 Hz. This results in a total of 101 data points at a rate of 2 points per second.

14.32. meas_loop_lsp

MethodSCRIPT 1.3

EmStat Pico N

EmStat4 Y

Perform a Linear Sweep Potentiometry (LSP) measurement. An LSP measurement scans a range of currents in

small steps and measures the potential at each step. Galvanostatic PGStat mode (6) is required for LSP. A more

detailed explanation on this technique can be found on the PalmSens knowledge base.


The resolution and maximum of the output current depend on the selected current range.

Make sure to set the expected range before starting the LSP measurement.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output potential var [out]

(float)

Output variable to store the measured potential in.

Output current var [out]

(float)

Output variable to store the set current for this iteration.

Begin current var / literal

(float)

The begin current for the LSP technique.

End current var / literal

(float)

The end current for the LSP technique.

Step current var / literal

(float)

The current increase for each step. Affects the amount of data points per

second, together with the scan rate. This is an absolute step. The

direction of the scan is determined by "Begin current" and "End current".

Scan rate var / literal

(float)

The scan rate of the LSP technique. This is the speed at which the

applied current is ramped in A/s. Can only be positive.

Example

Perform an LSP measurement and send a data packet for every iteration. The data packet contains the set

current and measured potential. The LSP performs a current sweep from -5 mA to 5 mA with steps of 100 µA at

a rate of 1 mA/s. This results in a total of 101 data points at a rate of 10 points per second.

meas_loop_lsp p c -5m 5m 100u 1m

 pck_start

 pck_add c

 pck_add p

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 61

https://www.palmsens.com/knowledgebase-article/linear-sweep-potentiometry-lsp

 pck_end

endloop

14.33. meas_loop_cv

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform a Cyclic Voltammetry (CV) measurement. In a CV measurement, the potential is stepped from the begin

potential to the vertex 1 potential, then the direction is reversed and the potential is stepped to the vertex 2

potential and finally the direction is reversed again and the potential is stepped back to the begin potential. The

current is measured at each step. A more detailed explanation on this technique can be found on the PalmSens

knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Set potential var [out]

(float)

Output variable to store the set potential for this iteration.

Measured

current

var [out]

(float)

Output variable to store the measured current in.

Begin potential var / literal

(float)

The begin potential for the CV technique.

Vertex 1 potential var / literal

(float)

The vertex 1 potential. First potential where direction reverses.

Vertex 2 potential var / literal

(float)

The vertex 2 potential. Second potential where direction reverses.

Step potential var / literal

(float)

The potential increase for each step. Affects the amount of data points

per second, together with the scan rate. This is an absolute step that

does not affect the direction of the scan.

Scan rate var / literal

(float)

The scan rate of the CV technique. This is the speed at which the applied

potential is ramped in V/s. Can only be positive.

Optional arguments

The following optional arguments are supported:

• poly_we

• nscans

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 62

https://www.palmsens.com/knowledgebase-article/cyclic-voltammetry
https://www.palmsens.com/knowledgebase-article/cyclic-voltammetry

Example

Perform a CV measurement and send a data packet for every iteration. The data packet contains the set

potential and measured current. The CV performs a potential scan from 0 mV to 500 mV to -500 mV to 0 mV. It

steps with 10 mV increments at a rate of 100 mV/s. This results in a total of 201 data points at a rate of 10

points per second.

meas_loop_cv p c 0 500m -500m 10m 100m

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

14.34. meas_fast_cv

MethodSCRIPT 1.4

EmStat Pico -

EmStat4 Y

Perform a Fast Cyclic Voltammetry (FCV) measurement. In a CV measurement, the potential is stepped from the

begin potential to the vertex 1, vertex 2 and back to the begin potential. For each step, the current is measured.

Contrary to the meas_loop_cv function, the Fast CV is not implemented as a measurement loop. That means

that the script cannot execute other commands during Fast CV. Measurement data is stored in arrays and can

be transmitted afterwards.

Arguments

Name Type Description

Potential Array [out]

(float)

The array to store the set potentials in.

Current Array [out]

(float)

The array to store the measured currents in.

Points count var [out]

(int)

The number of measurement points. The VarType of the variable will be

set to VT_COUNT (ee).

Begin potential var / literal

(float)

The potential to start at (and eventually, to end at).

Vertex 1 potential var / literal

(float)

The potential of the first point to change direction in.

Vertex 2 potential var / literal

(float)

The potential of the second point to change direction in.

Step potential var / literal

(float)

The potential step size.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 63

Name Type Description

Scan rate var / literal

(float)

The speed at which the scan is performed (in V/s).


The instrument will round its step size to its DAC resolution (see device description

document). As a result, the number of points can vary between instruments and may be

slightly different than expected. The actual number of points measured will be stored in the

Points count variable.

Optional arguments

For Fast CV, these optional arguments can be combined freely.

• nscans

• nscans_avg

• nscans_equil

nscans defines the number of scans to perform sequentially, the result is stored in the Current array. The first

and last measured sample are both measured at the begin potential for symmetry. Splitting the output into

multiple scans is quite straightforward. The number of samples per scan is equal to the total number of samples

divided by the number of scans.

Currents measured at the last point of one scan are copied and used as first point for the next scan. This is

done for convenience and avoids applying the same potential twice in a row.

Index in array Measurement

index

Scan Potential Description

0 0 1 0 mV Begin potential

1 1 1 100 mV Vertex 1 potential

2 2 1 0 mV

3 3 1 -100 mV Vertex 2 potential

4 4 1 0 mV Begin potential

5 4 2 0 mV Begin potential, copy of previous point,

no extra measurement.

6 5 2 100 mV Vertex 1 potential

7 6 2 0 mV

8 7 2 -100 mV Vertex 2 potential

9 8 2 0 mV Begin potential

nscans_equil steps through all vertexes, just like a regular CV scan. The equillibration scans do not measure the

current and are intended to prepare the cell before a the first scan.

nscans_avg takes the average of all points over multiple scans while making sure that every potential is set

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 64

exactly once. This allows averaging more samples to achieve a better signal-to-noise ratio, while still maintaining

a low step potential. However, care should be taken that these multiple scans overlap.

Example 1

The following example performs a Fast CV without optional arguments. It will start at 0 V, go to vertex 1 at 100

mV before going to -100 mV and back to 0 V. The step size is 10 mV and the scan rate is 1 V/s.

array p 41i

array i 41i

var c

meas_fast_cv p i c 0 100m -100m 10m 1

Example 2: nscans

The following example performs a Fast CV with nscans argument to perform 5 scans sequentially.

array p 205i

array i 205i

var c

meas_fast_cv p i c 0 100m -100m 10m 1 nscans(5)

Example 3: nscans_equil

The following example illustrates Fast CV with nscans_equil argument to perform 2 scans before actual

measurements. After the 2 equilibration scans, a single Fast CV scan is performed.

array p 41i

array i 41i

var c

meas_fast_cv p i c 0 100m -100m 10m 1 nscans_equil(2)

Example 4: nscans_avg

The following example performs a Fast CV with nscans_avg argument to perform averaging over 3 scans. The

format of p , i and c variables is the same as if nscans_avg was not performed even though the values are

averaged.

array p 41i

array i 41i

var c

meas_fast_cv p i c 0 100m -100m 10m 1 nscans_avg(3)

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 65

Example 5: nscans_equil, nscans and nscans_avg

The following example performs a Fast CV with all 3 optional arguments. After equillibrating for 1 scan, 3 scans

are performed which are averaged twice each.

array p 123i

array i 123i

var c

meas_fast_cv p i c 0 100m -100m 10m 1 nscans_equil(1) nscans(3) nscans_avg(2)

 An example with an entire Fast CV script can be found in Section 15.4, “Fast CV example”.

14.35. meas_loop_dpv

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform a Differential Pulse Voltammetry (DPV) measurement. In a DPV measurement, the potential is stepped

from the begin potential to the end potential. At each step, the current (reverse current) is measured, then a

potential pulse is applied and the current (forward current) is measured. The forward current minus the reverse

current is stored in the "Measured current" variable. A more detailed explanation on this technique can be found

on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Set potential var [out]

(float)

Output variable to store the set potential for this iteration.

Measured

current

var [out]

(float)

Output variable to store "forward current – reverse current" in.

Begin potential var / literal

(float)

The begin potential for the potential scan.

End potential var / literal

(float)

The end potential for the potential scan.

Step potential var / literal

(float)

The potential increase for each step. Affects the amount of data points

per second, together with the scan rate. This is an absolute step that

does not affect the direction of the scan.

Pulse potential var / literal

(float)

The potential of the pulse. This is added to the currently applied potential

during a step. Pulse potential must be an absolute value, the direction of

the pulse depends on scan direction.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 66

https://www.palmsens.com/knowledgebase-article/differential-pulse-voltammetry-dpv/

Name Type Description

Pulse time var / literal

(float)

The time the pulse should be applied.

Scan rate var / literal

(float)

The speed at which the applied potential is ramped in V/s. Can only be

positive. Scan rate must be lower than "Step potential / Pulse time / 2".

 On the EmStat Pico, pulse time may not be larger than 50% of the iteration, otherwise the

instrument will throw an error.

Optional arguments

The following optional arguments are supported:

• poly_we

Example

Perform a DPV measurement and send a data packet for every iteration. The data packet contains the set

potential and "forward current – reverse current". The DPV performs a potential scan from -500 mV to 500 mV

with steps of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per

second. At every step a pulse of 20 mV is applied for 5 ms.

meas_loop_dpv p c -500m 500m 10m 20m 5m 100m

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

14.36. meas_loop_swv

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform a Square Wave Voltammetry (SWV) measurement. In a SWV measurement, the potential is stepped

from the begin potential to the end potential. At each step, the current (reverse current) is measured, then a

potential pulse is applied and the current (forward current) is measured. The forward current minus the reverse

current is stored in the "Measured current" variable. The pulse length is "1 / Frequency / 2". A more detailed

explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 67

https://www.palmsens.com/knowledgebase-article/square-wave-voltammetry-swv

Arguments

Name Type Description

Set potential var [out]

(float)

Output variable to store the set potential for this iteration.

Measured

current

var [out]

(float)

Output variable to store "forward current – reverse current" in.

Output forward

current

var [out]

(float)

Output variable to store forward current in.

Output reverse

current

var [out]

(float)

Output variable to store reverse current in.

Begin potential var / literal

(float)

The begin potential for the potential scan.

End potential var / literal

(float)

The end potential for the potential scan.

Step potential var / literal

(float)

The potential increase for each step. This is an absolute step that does

not affect the direction of the scan.

Amplitude

potential

var / literal

(float)

The amplitude of the pulse. This value times 2 is added to the currently

applied potential during a step.

Frequency var / literal

(float)

The frequency of the pulses.

Optional arguments

The following optional arguments are supported:

• poly_we

Example

Perform a SWV measurement and send a data packet for every iteration. The data packet contains the set

potential and "forward current – reverse current". The SWV performs a potential scan from -500 mV to 500 mV

with steps of 10 mV at a frequency of 10 Hz. This results in a total of 101 data points at a rate of 10 points per

second. At every step a pulse of 30 mV (2 * 15 mV) is applied for 50 ms (1/Frequency/2).

meas_loop_swv p c f r -500m 500m 10m 15m 10

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 68

14.37. meas_loop_npv

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform a Normal Pulse Voltammetry (NPV) measurement. In an NPV measurement, the pulse potential is

stepped from the begin potential to the end potential. At each step the pulse potential is applied and the current

is measured at the top of this pulse. The potential is then set back to the begin potential until the next step. The

measured current is stored in the "Output current" variable. A more detailed explanation on this technique can

be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output potential var [out]

(float)

Output variable to store the pulse potential for this iteration.

Output current var [out]

(float)

Output variable to store the measured current in.

Begin potential var / literal

(float)

The base potential on which each iteration creates a step.

End potential var / literal

(float)

The potential of the last pulse.

Step potential var / literal

(float)

The pulse potential increase for each step. Affects the amount of data

points per second, together with the scan rate. This is an absolute step

that does not affect the direction of the scan.

Pulse time var / literal

(float)

The time the pulse should be applied.

Scan rate var / literal

(float)

The speed at which the applied potential is ramped in V/s. Can only be

positive. Scan rate must be lower than "Step potential / Pulse time / 2".

Optional arguments

The following optional arguments are supported:

• poly_we

Example

Perform an NPV measurement and send a data packet for every iteration. The data packet contains the set

potential and measured pulse current. The NPV performs a potential scan from -500 mV to 500 mV with steps

of 10 mV at a rate of 100 mV/s. This results in a total of 101 data points at a rate of 10 points per second. At

every step a potential pulse of "step index * step potential" mV is applied for 5ms.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 69

https://www.palmsens.com/knowledgebase-article/normal-pulse-voltammetry-npv

meas_loop_npv p c -500m 500m 10m 20m 5m 100m

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

14.38. meas_loop_ca

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform a Chronoamperometry (CA) measurement. In a CA measurement, a DC potential is applied and the

current is measured at the specified interval. The measured current is stored in the "Output current" variable. A

more detailed explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output potential var [out]

(float)

Output variable to store the set potential for this iteration.

Output current var [out]

(float)

Output variable to store the measured current in.

DC potential var / literal

(float)

The DC potential to be applied.

Interval time var / literal

(float)

The interval between measured data points.

Run time var / literal

(float)

The total run time of the measurement.

Optional arguments

The following optional arguments are supported:

• poly_we

Example

Perform a CA measurement and send a data packet for every iteration. The data packet contains the set

potential and measured current. A DC potential of 100 mV is applied. The current is measured every 100 ms for

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 70

https://www.palmsens.com/knowledgebase-article/chronoamperometry-ca

a total of 2 seconds. This results in a total of 20 data points at a rate of 10 points per second.

meas_loop_ca p c 100m 100m 2

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

14.39. meas_loop_ca_alt_mux

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Perform a Chronoamperometry (CA) measurement in alternating multiplexer mode. In a CA measurement, a DC

potential is applied and the current is measured at the specified interval. A more detailed explanation on this

technique can be found on the PalmSens knowledge base.

During the interval time, all selected multiplexer channels are measured for an equal amount of time. The

measured current is stored in the "Output current" array. This array should be large enough to hold all sampled

multiplexer channels. Before this alternating multiplexer command can be used, the multiplexer has to be

configured using mux_config.


Some settling time (~5 ms) is required after switching a multiplexer channel, make sure the

interval time is long enough.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output potential var [out]

(float)

Output variable to store the set potential for this iteration.

Output current Array [out]

(float)

Output array to store the measured currents for the current iteration. The

first value in the array is the measured current on the first multiplexer

channel.

DC potential var / literal

(float)

The DC potential to be applied.

Interval time var / literal

(float)

The interval between measured data points. Note that the time per

multiplexer channel is the interval time divided by the number of

multiplexer channels.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 71

https://www.palmsens.com/knowledgebase-article/chronoamperometry-ca

Name Type Description

Run time var / literal

(float)

The total run time of the measurement.

First multiplexer

channel

var / literal

(int)

The first multiplexer channel to measure (starting at 1).

Last multiplexer

channel

var / literal

(int)

The last multiplexer channel to measure (starting at 1).

Example

The following example performs a CA measurement on multiplexer channels 1 to 3. Apply a potential of 1 V, use

an interval of 300 ms, and run for 9 seconds.

array c 3i

var p

var t

meas_loop_ca_alt_mux p c 1 300m 9000m 1i 3i

 pck_start

 pck_add p

 array_get c 0i t

 pck_add t

 array_get c 1i t

 pck_add t

 array_get c 2i t

 pck_add t

 pck_end

endloop

14.40. meas_fast_ca

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Perform a Fast Chronoamperometry (FCA) measurement.

This command is similar to the meas_loop_ca command, which is a measurement loop command. However, the

fast measurement command is intended for short, (very) fast measurements with an accurate timing. The

maximum data rate is 1 MS/s (1 million samples per second), using an interval time of 1 µs. Measurement points

are averaged at maximum sample rate during the interval time, if possible. To achieve this, no other

MethodSCRIPT commands can be performed during the measurement, and the results must be stored in an

array. As a consequence, the number of data points to measure is limited to the maximum size of an array

(50,000 on the EmStat4).

The set_acquisition_frac command does not apply for Fast CA measurements. Measurements are performed

over the entire interval time.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 72

Arguments

Name Type Description

Potential var [out]

(float)

Variable to store the set potential in. This is a single value because the set

potential is the same for all data points.

Current array [out]

(float)

Array to store the measured currents in. The array must be large enough

to store all data points. The number of data points is determined by the

run time and interval time.

Points count var [out]

(int)

Variable to store the number of measurement points in. The VarType of

the variable will be set to VT_COUNT (ee).

DC potential var / literal

(float)

The DC potential to set.

Interval time var / literal

(float)

The interval time (i.e. the time between measurements). The minimum

interval time is 1 µs. The maximum interval time is 1 minute.

Run time var / literal

(float)

The total measurement time. This must be greater than or equal to the

interval time.

Example

The following example performs a Fast CA measurement of 1 ms with an interval time of 1 µs and an applied

potential of 200 mV.

var potential

array currents 1000

var num_points

meas_fast_ca potential currents num_points 200m 1u 1m

A more comprehensive example can be found in Section 15.5, “Fast CA example”.

14.41. meas_loop_cp

MethodSCRIPT 1.3

EmStat Pico N

EmStat4 Y

Perform a Chronopotentiometry (CP) measurement. In a CP measurement, a DC current is applied and the

potential is measured at the specified interval. The measured potential is stored in the "Output potential"

variable. Galvanostatic PGStat mode (6) is required for CP. A more detailed explanation on this technique can be

found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 73

https://www.palmsens.com/knowledgebase-article/chronopotentiometry-cp

Name Type Description

Output potential var [out]

(float)

Output variable to store the measured potential for this iteration.

Output current var [out]

(float)

Output variable to store the set current in.

DC current var / literal

(float)

The DC current to be applied.

Interval time var / literal

(float)

The interval between measured data points.

Run time var / literal

(float)

The total run time of the measurement.

Example

Perform a CP measurement and send a data packet for every iteration. The data packet contains the measured

potential and set current. A DC current of 1 mA is applied. The potential is measured every 100 ms for a total of

2 seconds. This results in a total of 20 data points at a rate of 10 points per second.

meas_loop_cp p c 1m 100m 2

 pck_start

 pck_add c

 pck_add p

 pck_end

endloop

14.42. meas_loop_cp_alt_mux

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Perform a Chronopotentiometry (CP) measurement in alternating multiplexer mode. In a CP measurement, a DC

current is applied and the potential is measured at the specified interval. Galvanostatic PGStat mode (6) is

required for CP. A more detailed explanation on this technique can be found on the PalmSens knowledge base.

During the interval time, all selected multiplexer channels are measured for an equal amount of time. The

measured potential is stored in the "Output potential" array. This array should be large enough to hold all

sampled multiplexer channels. Before this alternating multiplexer command can be used, the multiplexer has to

be configured using mux_config.


Some settling time (~5 ms) is required after switching a multiplexer channel, make sure the

interval time is long enough.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 74

https://www.palmsens.com/knowledgebase-article/chronopotentiometry-cp

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output potential Array [out]

(float)

Output array to store the measured potentials for the current iteration.

The first value in the array is the measured potential on the first

multiplexer channel.

Output current var [out]

(float)

Output variable to store the set current for this iteration.

DC current var / literal

(float)

The DC current to be applied.

Interval time var / literal

(float)

The interval between measured data points. Note that the time per

multiplexer channel is the interval time divided by the number of

multiplexer channels.

Run time var / literal

(float)

The total run time of the measurement.

First multiplexer

channel

var / literal

(int)

The first multiplexer channel to measure (starting at 1).

Last multiplexer

channel

var / literal

(int)

The last multiplexer channel to measure (starting at 1).

Example

The following example performs a CP measurement on multiplexer channels 1 to 3. Apply a current of 1 uA, use

an interval of 300 ms, and run for 9 seconds.

array p 3i

var c

var t

meas_loop_cp_alt_mux p c 1u 300m 9000m 1i 3i

 pck_start

 pck_add c

 array_get p 0i t

 pck_add t

 array_get p 1i t

 pck_add t

 array_get p 2i t

 pck_add t

 pck_end

endloop

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 75

14.43. meas_loop_pad

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform a Pulsed Amperometric Detection (PAD) measurement. In a PAD measurement, potential pulses are

periodically applied. Each iteration starts at the DC potential, the current is measured before the pulse (idc). Then

the pulse potential is applied, and the current is measured at the end of the pulse (ipulse). The output current

returns a current value depending of one the 3 modes: dc (idc), pulse (ipulse) or differential (ipulse – idc). A more

detailed explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output potential var [out]

(float)

Output variable to store the set potential for this iteration.

Output current var [out]

(float)

Output variable, content depending on the value of the mode parameter

DC mode: idc

Pulse mode: ipulse

Differential mode: ipulse - idc

DC potential var / literal

(float)

The DC potential for the potential scan.

Pulse potential var / literal

(float)

The potential of the pulse. This is the potential that is set during a pulse. It

is not referenced to the DC potential.

Pulse time var / literal

(float)

The time the pulse should be applied.

Interval time var / literal

(float)

The time of the pulse interval

Run time var / literal

(float)

Total run time of the measurement

mode uint8 PAD mode : 1 = DC , 2 = pulse , 3 = differential

Optional arguments

The following optional arguments are supported:

• poly_we

Example

Perform a PAD measurement and send a data packet for every iteration. The data packet contains the set

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 76

https://www.palmsens.com/knowledgebase-article/pulsed-amperometric-detection-pad

potential and measured current. A DC potential of 500 mV is applied. A pulse potential of 1500mV is applied

every 50 ms for 10 ms and the current is measured on the pulse (mode = pulse). The measurement is 10,05

seconds in total. This results in a total of 201 data points at a rate of 20 points per second.

meas_loop_pad p c 500m 1500m 10m 50m 10050m 2

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

14.44. meas_loop_ocp

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform an Open Circuit Potentiometry (OCP) measurement. In an OCP measurement, the CE is disconnected

so that no potential is applied. Therefore, the cell needs to be turned off (using the cell_off command) before

starting this measurement. The open circuit RE potential is measured at the specified interval. The measured

potential is stored in the "Output potential" variable. A more detailed explanation on this technique can be found

on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output potential var [out]

(float)

Output variable to store the measured RE potential in.

Interval time var / literal

(float)

The interval between measured data points.

Run time var / literal

(float)

The total run time of the measurement.

Example

Perform an OCP measurement and send a data packet for every iteration. The data packet contains the

measured RE potential. The RE potential is measured every 100 ms for a total of 2 seconds. This results in a

total of 20 data points at a rate of 10 points per second.

meas_loop_ocp p 100m 2

 pck_start

 pck_add p

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 77

https://www.palmsens.com/knowledgebase-topic/ocp/

 pck_end

endloop

14.45. meas_loop_ocp_alt_mux

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Perform an Open Circuit Potentiometry (OCP) measurement in alternating multiplexer mode. In an OCP

measurement, the CE is disconnected so that no potential is applied. Therefore, the cell needs to be turned off

(using the cell_off command) before starting this measurement. A more detailed explanation on this technique

can be found on the PalmSens knowledge base.

During the interval time, all selected multiplexer channels are measured for an equal amount of time. The

measured potential is stored in the "Output potential" array. This array should be large enough to hold all

sampled multiplexer channels. Before this alternating multiplexer command can be used, the multiplexer has to

be configured using mux_config.


Some settling time (~5 ms) is required after switching a multiplexer channel, make sure the

interval time is long enough.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output potential Array [out]

(float)

Output array to store the measured potentials for the current iteration.

The first value in the array is the measured potential on the first

multiplexer channel.

Interval time var / literal

(float)

The interval between measured data points. Note that the time per

multiplexer channel is the interval time divided by the number of

multiplexer channels.

Run time var / literal

(float)

The total run time of the measurement.

First multiplexer

channel

var / literal

(int)

The first multiplexer channel to measure (starting at 1).

Last multiplexer

channel

var / literal

(int)

The last multiplexer channel to measure (starting at 1).

Example

The following example performs an OCP measurement on multiplexer channels 1 to 3. Use an interval of 300

ms, and run for 9 seconds.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 78

https://www.palmsens.com/knowledgebase-topic/ocp/

array p 3i

var t

meas_loop_ocp_alt_mux p 300m 9000m 1i 3i

 pck_start

 array_get p 0i t

 pck_add t

 array_get p 1i t

 pck_add t

 array_get p 2i t

 pck_add t

 pck_end

endloop

14.46. meas_loop_eis

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Perform a (potentiostatic) Electrochemical Impedance Spectroscopy (EIS) measurement.

Perform a frequency scan and store the resulting Z-real and Z-imaginary in the given variables. High speed

potentiostatic PGStat mode is required for EIS. The following commands currently have no effect on EIS

measurements:

• set_max_bandwidth : bandwidth is taken from frequency scan ranges.

• set_pot_range : pot range is taken from amplitude and DC potential arguments.

A more detailed explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output frequency var [out]

(float)

Output variable to store the applied frequency (Hz) for this iteration.

Output Z-real var [out]

(float)

Output variable to store the real part of the measured complex

impedance. This field also contains the metadata of the I-signal (current)

Output Z-

imaginary

var [out]

(float)

Output variable to store the imaginary part of the measured complex

impedance. This field also contains the metadata of the E-signal

(potential)

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 79

https://www.palmsens.com/knowledgebase-article/electrochemical-impedance-spectroscopy-eis

Name Type Description

Amplitude var / literal

(float)

Amplitude of the applied sine wave in Vrms

Start frequency var / literal

(float)

Start frequency of the scan in Hz

End frequency var / literal

(float)

End frequency of the scan in Hz

Nr of points var / literal

(int, float)

Number of frequency points to be scanned.

DC potential var / literal

(float)

DC potential offset of the applied sine wave in Volt.

Optional arguments

The following optional arguments are supported:

• eis_tdd

• eis_opt

• eis_acdc

Example

Perform an EIS frequency scan from 100 kHz to 100 Hz with 10 mV amplitude and 200 mV DC offset. The

frequency for each iteration is returned in variable f . The measured complex impedance is returned in 2

variables with Z-real in r and Z-imaginary in i . In total, 11 points will be measured at frequencies between 100

kHz and 100 Hz, divided on a logarithmic scale.

mode 3= high speed mode

set_pgstat_mode 3

meas_loop_eis f r i 10m 100k 100 11i 200m

 pck_start

 pck_add f

 pck_add r

 pck_add i

 pck_end

endloop

14.47. meas_loop_geis

MethodSCRIPT 1.3

EmStat Pico N

EmStat4 Y

Perform a Galvanostatic Electrochemical Impedance Spectroscopy (GEIS) measurement.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 80

Perform a frequency scan and store the resulting Z-real and Z-imaginary in the given variables. Galvanostatic

PGStat mode (6) is required for GEIS. The following commands currently have no effect on GEIS measurements:

• set_max_bandwidth: bandwidth is taken from frequency scan ranges.

• set_pot_range: pot range is taken from amplitude and DC potential arguments.

A more detailed explanation on this technique can be found on the PalmSens knowledge base.

This is a measurement loop function and needs to be terminated with an endloop command. Refer to Chapter

6, Measurement loop commands for more information about measurement loops in general.

Arguments

Name Type Description

Output frequency var [out]

(float)

Output variable to store the applied frequency (in Hz) for this iteration.

Output Z-real var [out]

(float)

Output variable to store the real part of the measured complex

impedance. This field also contains the metadata of the I-signal (current).

Output Z-

imaginary

var [out]

(float)

Output variable to store the imaginary part of the measured complex

impedance. This field also contains the metadata of the E-signal

(potential).

Amplitude var / literal

(float)

Amplitude of the applied sine wave in Arms.

Start frequency var / literal

(float)

Start frequency of the scan in Hz.

End frequency var / literal

(float)

End frequency of the scan in Hz.

Nr of points var / literal

(int, float)

Number of frequency points to be scanned.

DC current var / literal

(float)

DC current offset of the applied sine wave in ampere


Exceeding the maximum amplitude will throw an error, see Appendix B, Device-specific

information for the maximum amplitude.

Optional arguments

The following optional arguments are supported:

• eis_tdd

• eis_opt

• eis_acdc

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 81

https://www.palmsens.com/knowledgebase-article/electrochemical-impedance-spectroscopy-eis

Example

Perform an GEIS measurement at frequency f with 10 mArms amplitude and 25mA DC offset. The measured

complex impedance is returned in 2 variables with Z-real in r and Z-imaginary in i . In total, 11 points will be

measured at frequencies between 100 kHz and 100 Hz, divided on a logarithmic scale.

mode 6= galvanostatic

set_pgstat_mode 6

meas_loop_geis f r i 10m 100k 100 11i 25m

 pck_start

 pck_add f

 pck_add r

 pck_add i

 pck_end

endloop

14.48. meas_ms_eis

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Perform a Multi-Sine EIS (MSEIS) measurement.

Multi-Sine EIS (MSEIS) can measure an impedance spectrum in less time then EIS at the cost of a reduced

Signal-to-Noise Ratio (SNR). This command performs a potentiostatic multi-sine EIS measurement and stores

the resulting frequencies, Z-real, and Z-imaginary in the given arrays.

The following commands currently have no effect on MSEIS measurements:

• set_max_bandwidth : bandwidth is taken from frequency scan ranges.

• set_pot_range : pot range is taken from amplitude and DC potential arguments.

Arguments

Name Type Description

Output frequency array [out]

(float)

Output array to store the applied frequencies (Hz) of all harmonics.

Output Z-real array [out]

(float)

Output array to store the real part of the measured complex impedances.

This field also contains the meta-data of the I-signal (current)

Output Z-

imaginary

array [out]

(float)

Output array to store the imaginary part of the measured complex

impedances. This field also contains the meta-data of the E-signal

(potential)

Amplitude var / literal

(float)

Peak amplitude of the applied waveform in volt.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 82

Name Type Description

Base frequency var / literal

(float)

Base frequency of the applied waveform in Hz.

DC potential var / literal

(float)

DC potential offset of the applied waveform in volt.

Preset var / literal

(int)

Index of the waveform preset that should be used.

Optional arguments

eis_tdd

eis_opt

ms_eis_acdc

Presets

Depending on the expected impedance curve, a perturbation-preset can be chosen. A total of 6 presets are

available with varying harmonics and amplitude distributions. Presets 1, 2, 4 and 5 feature a logarithmically

decaying amplitude distribution, meaning that the base frequency has a relative amplitude of 1, and the highest

included harmonic has a relative amplitude as specified in the table. The decrease of amplitude follows a

logarithmic distribution, and can be benificial when the cell shows capacitive behavior.

Flat Logarithmic

Multisine 5

(1-9x)

Preset 0 Preset 1 (min rel. amplitude =

0.7)

Preset 2 (min rel. amplitude =

0.3)

Multisine 15

(1-99x)

Preset 3 Preset 4 (min rel. amplitude =

0.5)

Preset 5 (min rel. amplitude =

0.1)

Example

Perform a MSEIS measurement using multisine preset 3 with 10 mV peak amplitude and 180 mV DC offset. The

harmonic frequencies and complex impedances are stored in the arrays freqs, reals and imags. The user must

ensure the supplied arrays are long enough to store the results of the chosen preset. When the measurement is

done, the data is sent back point by point in a loop.

array freqs 15

array reals 15

array imags 15

var idx

var tempfreq

var tempreal

var tempimag

meas_ms_eis freqs reals imags 10m 100m 180m 3

store_var idx 0i ja

loop idx < 15

pck_start

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 83

 array_get freqs idx tempfreq

 array_get reals idx tempreal

 array_get imags idx tempimag

 pck_add tempfreq

 pck_add tempreal

 pck_add tempimag

pck_end

add_var idx 1i

endloop

14.49. set_autoranging

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Configure the autoranging for all meas_loop_* functions. Autoranging selects the most appropriate range for the

measured value in the last measurement loop iteration. The selected range is limited by the min and max

arguments. If min and max are the same value, autoranging is disabled.

Arguments

Name Type Description

Var type VarType The type of variable to measure, see Chapter 7, Variable types.

Min var / literal

(float)

The minimum value in this measurement. Must be positive.

Max var / literal

(float)

The maximum value in this measurement. Must be positive.



The VarType argument is new in MethodSCRIPT v1.3. To provide backward compatibility

with older scripts, the old syntax (with two arguments) is still supported as well. When the

first argument is ommitted, the VarType ba (VT_CURRENT) is used. So, set_autoranging 1u
1m (old command) is the same as set_autoranging ba 1u 1m (new command). The old

syntax might be removed in the future.

Example 1

Enable autoranging for currents between 1 µA and 1 mA.

set_autoranging ba 1u 1m

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 84

Example 2

Enable autoranging for potentials between 10 mV and 1 V.

set_autoranging ab 10m 1000m

14.50. pck_start

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Start a measurement data packet. Up to 33 variables can be added to the packet using the pck_add command.

The complete packet is transmitted with the pck_end command.

Arguments

-

Optional arguments

The following optional arguments are supported:

• meta_msk

Example

Signal the start of a new measurement data package.

pck_start

14.51. pck_add

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Add a variable (or literal) to the measurement data package previously started with pck_start .

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 85

Arguments

Name Type Description

Variable var / literal

(int, float)

The variable to add to the data package.

Example

Add variable i to the measurement data package.

pck_add i

14.52. pck_end

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Send the measurement data package previously started with pck_start , containing all variables added using

pck_add . The pck_end command may be called only once after each pck_start command.

Arguments

-

Example

Signal the end of a measurement data package.

pck_end

14.53. set_max_bandwidth

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Set maximum bandwidth of the signal being measured. Any signal of significant higher frequency than the set

bandwidth will be filtered out. There is no defined lower bound to the bandwidth. At the maximum bandwidth,

the signal is attenuated by up to 1% of the potential or current step.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 86

Arguments

Name Type Description

Max bandwidth var / literal

(float)

The maximum expected bandwidth expected. Anything below this

frequency will not be filtered out.

Example

Set the max bandwidth to a frequency of 1 kHz.

set_max_bandwidth 1k

14.54. set_cr (deprecated)

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Set the current range for the given maximum current. The device will select the lowest current range that can

measure this current without overloading.

 The set_cr command has been deprecated and may be removed in future releases. Use the

set_range or set_range_minmax command instead.

 This command is ignored when autoranging is enabled for meas_loop_eis .

Arguments

Name Type Description

Max current var / literal

(float)

The maximum expected absolute current.

Example

Set current range to be able to measure a current of 500 nA.

set_cr 500n

 It is recommended to use set_range ba 500n instead.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 87

14.55. set_range

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Set the expected maximum absolute current or potential for a given VarType. This value will be interpreted as a

range between -"Max value" and "Max value". The device will automatically configure itself to best handle values

within this range. Unsupported VarTypes are ignored without throwing an error.

The following variable types are currently supported:

• Measured current (ba): selects the lowest current range that can measure the +/- "Max value" current

without causing an overload. This ensures the WE current can be measured at the best available resolution

and accuracy. This command is ignored in galvanostatic mode.

• Measured potential (ab): selects the lowest potential range that can measure the +/- "Max value" potential

without causing an overload. This ensures the WE/SE vs RE potential can be measured at the best available

resolution and accuracy.

• Applied current (db): selects the lowest current range that can apply the +/- "Max value" current without

causing an overload. This ensures the WE current can be applied at the best available resolution and

accuracy. This command is ignored in non-galvanostatic modes.

• Applied potential (da): using set_range is not recommended for "Applied potential (da)". For the EmStat

Pico, consider using set_range_minmax instead.

The following table shows which variable types are supported on which devices:

Variable type EmStat Pico Emstat4

ba Yes Yes

ab No Yes

db No Yes

da Not recommended No

 This command is ignored when autoranging is enabled for meas_loop_eis , meas_loop_acv
and meas_ms_eis .

 Calling set_range with "Max value" is equivalent to calling set_range_minmax with -"Max

value" and "Max value".

Arguments

Name Type Description

Variable type VarType The type identifier for this value (see description above).

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 88

Name Type Description

Max value var / literal

(float)

The maximum expected absolute current or potential.

Example

Set current range (ba) to be able to measure scurrent between -500 and 500 nA.

set_range ba 500n

14.56. set_range_minmax

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Set the expected minimum and maximum current or potential for a given VarType. The device will automatically

configure itself to best handle values within the range between the specified minimum and maximum value.

Unsupported VarTypes are ignored without throwing an error.

The following variable types are currently supported:

• Measured current (ba): selects the lowest current range that can measure both the "Min value" and "Max

value" current without causing an overload. This ensures the WE current can be measured at the best

available resolution and accuracy. This command is ignored in galvanostatic mode.

• Measured potential (ab): selects the lowest potential range that can measure both the "Min value" and "Max

value" potential without causing an overload. This ensures the WE/SE vs RE potential can be measured at

the best available resolution and accuracy.

• Applied current (db): selects the lowest current range that can apply both the "Min value" and "Max value"

current without causing an overload. This ensures the WE current can be applied at the best available

resolution and accuracy. This command is ignored in non-galvanostatic modes.

• Applied potential (da): configures the device to be able to apply both the "Min value" and the "Max value"

potential. The EmStat Pico requires this command to reach its full applied potential, as it has a limited

"Dynamic potential window" that can moved around with this command. See Section B.1, “PGStat mode

properties” for more information.

The following table shows which variable types are supported on which devices:

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 89

Variable type EmStat Pico Emstat4

ba Yes Yes

ab No Yes

db No Yes

da Yes No

 This command is ignored when autoranging is enabled for meas_loop_eis , meas_loop_acv
and meas_ms_eis .

Arguments

Name Type Description

Variable Type VarType The type identifier for this value (see description above).

Min value var / literal

(float)

The minimum expected current or potential.

Max value var / literal

(float)

The maximum expected current or potential.

Example

Set current range (ba) to be able to measure a current of -500 to 500 nA.

set_range_minmax ba -500n 500n

14.57. cell_on

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Turn the cell on. This enables the WE potential or current regulation. Whether the WE is regulated for current or

for potential depends on the selected PGStat Mode.

Arguments

-

Example

Turn the cell on. The instrument will start applying the configured potential or current.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 90

cell_on

14.58. cell_off

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Turn the cell off.

Arguments

-

Example

Turn the cell off. This stops the instrument from applying a potential or current to the cell.

cell_off

14.59. set_pgstat_mode

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Set the PGStat hardware configuration to be used for measurements. Setting the PGStat mode initializes all

channel settings to the default values for that mode.

Arguments

Name Type Description

PGStat mode uint8 0 = Off

2 = Low Speed mode

3 = High Speed mode

4 = Max Range mode

5 = Poly WE (BiPot) mode

6 = Galvanostatic mode

Example

Set hardware configuration to high speed mode.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 91

set_pgstat_mode 3

14.60. send_string

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Send an arbitrary string as output of the MethodSCRIPT. This string is prepended by a T , which is the text

package identifier.

Arguments

Name Type Description

Text string The text to send.

Example

Send the text "hello world".

send_string "hello world"

Output:

Thello world

14.61. set_gpio_cfg

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Set the GPIO pin configuration. Pins can be configured as one of multiple supported modes. To use a pin in a

specific mode, it must be configured for that mode. See Section B.6, “Device I/O pin configurations” for available

pin configurations per device.

Arguments

Name Type Description

Pin mask uint32 Bitmask specifying which pins are configured with this command.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 92

Name Type Description

Mode uint8 0 = Digital Input

1 = Digital Output

2 = Peripheral 1 (EmStat Pico only)

3 = Peripheral 2 (reserved for future use)

Example

Set pins 0 and 1 to digital output mode. The prefix 0b means that the following value is expressed in a binary

format.

set_gpio_cfg 0b11 1

14.62. set_gpio_pullup

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Enable or disable GPIO pin pull-ups.

Arguments

Name Type Description

Pin mask uint32 Bitmask specifying which pins are configured with this command. Only

input pins should be specified. Configuring the pull-up of an output pin

will result in an error.

Pull-up uint8 0 = Pull-up disabled

1 = Pull-up enabled

Example

Enable pull-up on pins 0 and 1. The prefix 0b means that the following value is expressed in a binary format.

set_gpio_pullup 0b11 1

14.63. set_gpio

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 93

Set the GPIO output values. This sets the output value of all pins. The output value only has effect when the pin

is configured as digital output pin.

Arguments

Name Type Description

Output values var / literal

(int)

Bitmask that represents the state of the bits. Bit 0 is for GPIO0, bit 1 for

GPIO1, etc. Bits that are set (1) correspond with a high output signal.

Example

Set the output value of pin 0 and 1 to high and all other pins to low.

set_gpio 0b11

14.64. get_gpio

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Get the GPIO input pin values. This reads the input value of all GPIO pins, independent of the configured mode.

For output pins, the input value will generally be equal to the output value. Bit operations could be used to filter

out specific pin values.

Arguments

Name Type Description

Pin mask var [out]

(int)

Bitmask that represents the state of the bits. Bit 0 is for GPIO0, bit 1 for

GPIO1, etc. Bits that are high correspond with a high input signal.

The VarType of the variable will be set to VT_PIN_MSK (ec).

Example

Read the GPIO input values and store the values in variable g . Then check the output state of GPIO5.

var g

get_gpio g

if g & 0x20

 send_string "GPIO5 is high"

else

 send_string "GPIO5 is low"

endif

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 94

14.65. set_gpio_msk

MethodSCRIPT 1.4

EmStat Pico -

EmStat4 Y

Write to the GPIO pins indicated by the mask. Both value and mask are bit masks with on bit per pin.


Some pins may be protected on certain instruments or configurations. Writing to these pins

will result in an error.

Arguments

Name Type Description

Mask var / literal

(int)
Mask indicating which pins to change, one bit per pin with 1 meaning

enabled.

Values var / literal

(int)

Values to write to masked pins, one bit per pin.

Example

Set the output value of pins 0 and 2 to 1 , and pins 1 and 3 to 0 .

set_gpio_msk 0b00001111 0b101

14.66. get_gpio_msk

MethodSCRIPT 1.4

EmStat Pico -

EmStat4 Y

Get the GPIO input pin values with a mask. This reads the input value of all GPIO pins specified by the mask,

independent of the configured mode. This is especially useful when multiple things are connected to the GPIO,

but only a few pins are relevant. Both returned value and mask have one bit per pin, where a bit with value 1 in

the mask means enabled.

Arguments

Name Type Description

Mask var / literal

(int)
Mask indicating which pins to read, one bit per pin with 1 meaning

enabled.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 95

Name Type Description

Values var [out]

(int)

Bitmask that represents the state of the bits specified by the first

argument. Bits that are high correspond with a high input signal.

The VarType of the variable will be set to VT_PIN_MSK (ec).

Example

Read the input value of GPIO5 and store the value in variable g . Then check the output state of GPIO5.

var g

get_gpio_msk 0x20 g

if g == 0x20

 send_string "GPIO5 is high"

else

 send_string "GPIO5 is low"

endif

14.67. set_pot_range (deprecated)

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Set the expected potential range for the following measurements. Some devices cannot apply their full potential

range in one measurement, but need to be set up beforehand to reach these potentials. This command lets you

communicate to the device what the voltage range is you expect in your measurement. The device will

automatically configure itself to be able to reach these potentials.

This is a device-specific command. Currently only the EmStat Pico requires this command to reach its full

potential range. The dynamic potential window is dependent on the PGStat mode and is defined in Section B.1,

“PGStat mode properties”.

 The set_pot_range command has been deprecated and may be removed in future releases.

Use the set_range or set_range_minmax command instead.

Arguments

Name Type Description

Potential 1 var / literal

(float)

Bound 1 of the expected voltage range for this measurement.

Potential 2 var / literal

(float)

Bound 2 of the expected voltage range for this measurement.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 96

Example

Ensure that the next measurement can apply potentials between 0 V and 1.2 V.

set_pot_range 0 1200m

 It is recommended to use set_range_minmax da 0 1200m instead.

14.68. set_pgstat_chan

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 Y

Select a PGStat channel. If the device has multiple channels, they can be selected with this command. Both

channels can be active at the same time, but the only way to measure both channels simultaneously is in

bipotentiostat (bipot) mode, using the poly_we optional argument. Refer to the instrument’s description

document to see how many channels each device has.

Arguments

Name Type Description

Channel index uint8 The PGStat channel index to select.

A zero-based numbering is used, so the first channel has index 0.

Example

Select the first PGStat channel (channel 0).

set_pgstat_chan 0

14.69. set_poly_we_mode

MethodSCRIPT 1.1

EmStat Pico Y

EmStat4 N

Select the mode of the additional working electrode.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 97

Arguments

Name Type Description

Poly WE mode uint8 The mode of the additional working electrode:

0 = fixed mode (Additional WE is kept fixed at the specified potential)

1 = offset mode (Additional WE will follow the main WE at a specified

offset potential)

Example

Set the additional working electrode mode to offset mode.

set_poly_we_mode 1

14.70. get_time

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Get the time since device startup in seconds.


The resolution is dependent on the returned time value (see table below for estimated

resolution). To measure time differences with a higher resolution, use the timer_start and

timer_get commands instead.

Arguments

Name Type Description

Variable var [out]

(float)

The output variable to store the time in.

The VarType of the variable will be set to VT_TIME (eb).

Example

Store the current time in variable t .

get_time t

Time accuracy

Internally, the system time is stored with a high resolution. MethodSCRIPT variables, on the other hand, use

floating-point representation for which the resolution depends on the actual value. As a result, the resolution of

the time returned by the get_time command gets lower when the device has been running for a longer time.

The table below gives an indication of the resolution to expect for certain system time values. For example,

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 98

between 10 an 100 days, the value may only distinguish between seconds, but not milliseconds. In a sense, it is

comparable with a clock which arms only tick at whole seconds rather than move linearly.

System time Resolution

< 1 hour 1 ms

1 to 24 hours 10 ms

1 to 10 days 100 ms

10 to 100 days 1 s

≥ 100 days worse than 1 s

14.71. file_open

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Open a file on the persistent storage. This file can be used to store script output to, using the

set_script_output command.

Arguments

Name Type Description

Path string The path to the file to open. The path may include folders. Folder names

are separated by a slash (/). As of MethodSCRIPT version 1.5: With

mode 2, a counter will be added where "&i" is in the path. This counter

will be increased until a file with that path does not exist.

Open mode uint8 0 = Create new file. If a file with the same name exists, it is overwritten.

1 = Create new file. If a file with the same name exists, new data is

appended to it.

2 = Create new file. If a file with the same name exists, the file is not

opened and an error is returned.

Example

Create a new file, overwriting any existing file with the same name.

file_open "measurement.txt" 0

14.72. file_close

MethodSCRIPT 1.2

EmStat Pico Y

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 99

EmStat4 Y

Close the currently open file. If output to file was enabled (see set_script_output), it will be disabled.

If no file is open, this command has no effect.

Arguments

-

Example

Close the currently open file.

file_close

14.73. set_script_output

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Set the output mode for the script. This affects where the measurement data packages and other script output

are sent to.

Arguments

Name Type Description

Output mode uint8 0 = Disable the output of the script completely.

1 = Output to the normal output channel (default).

2 = Output to file storage.

3 = Output to both normal channel and file storage.

Output to file storage is only allowed when a file is currently open, otherwise an error occurs.

Example

Set the script output to be directed to file storage and normal output.

set_script_output 3

14.74. hibernate

MethodSCRIPT 1.2

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 100

EmStat Pico Y

EmStat4 Y

Put the device in hibernate mode. Hibernate is deep sleep mode in which many non-critical components of the

instrument are disabled to reduce power consumption. The instrument remains functioning during hibernate, but

suspends script execution until any of the enabled wake-up conditions is met. There are three wake-up

conditions, that can be enabled individually:

• Communication: A character is received over the communication interface (typically UART or USB).

• WAKE pin: The WAKE pin is asserted. Each instrument has a dedicated WAKE pin (GPIO5 on the EmStat4,

GPIO7 on the EmStat Pico). The pin must be configured correctly (as input pin) when this wake-up source is

enabled. On the EmStat4, a low value on the input wakes up the instrument. On the EmStat Pico, a low-to-

high transition (falling edge) wakes up the instrument.

• Timer: The specified time has passed.

If multiple wake-up sources are enabled, the instrument wakes up as soon as one condition is met.

 All channels settings are cleared, and channels are switched off in hibernate mode.


During hibernate, the communication input is flushed, so any commands sent to the device

during hibernate might get lost.

Arguments

Name Type Description

Wake-up source

mask

uint8 Bitmask for wake-up sources:

0x01 = Communication

0x02 = WAKE pin

0x04 = Timer

At least one wake-up source must be specified.

Wake-up time var / literal

(float)

Time in seconds after which the system is woken up by the system timer.

(Must be >0 if the Timer is used as wake-up source.)

Example

Hibernate until the system is woken by the wake-up pin, UART or after 60 seconds.

hibernate 7i 60

Device-specific information

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 101

EmStat Pico

Disabling internal ADT7420 to save power

The hibernate command on the EmStat Pico will disable the on-board ADT7420 temperature sensor to

save more power when GPIO8 and GPIO9 are configured for I²C. The current consumption with the

temperature sensor enabled is about 250 µA higher that it would be with the sensor disabled. It is up to

the user to configure these pins for I²C prior to entering hibernate or disable the temperature sensor

manually. See Section 14.61, “set_gpio_cfg” for more information on configuring GPIO.

Shutdown output pin

The EmStat Pico has the ability to set GPIO0 high when in hibernate. This behavior can be activated by

configuring GPIO0 in mode 2 (see example below).

set_gpio_cfg 0x01 2

Known limitations

• On the EmStat Pico, arrays are not preserved when a hibernate command is issued.

• The minimum hibernation time is 125 ms. Error code 0x4002 will be thrown when the specified time

value is too short.

EmStat4

On the EmStat4, the hibernate command does not really put the device into hibernate mode, so it does

not decrease the power consumption. It is mainly implemented to be compatible with other

MethodSCRIPT instruments. Except for the difference in power consumption, the commands act similarly

on all instruments.

14.75. i2c_config

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Setup I²C configuration. This is required before using any other I²C command from MethodSCRIPT. The I²C

interface supported by MethodSCRIPT always works as master. Multi-master mode is currently not supported.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 102

Arguments

Name Type Description

Clock speed var / literal

(int/float)

I²C clock speed in Hz. 100 kHz (standard mode) and 400 kHz (fast mode)

are officially supported.

Address mode literal

(int/float)

I²C addressing mode (7-bit or 10-bit)

Example

Configure I²C for standard mode (100 kHz) with 7-bit address.

i2c_config 100k 7


On the EmStat Pico, make sure the I²C GPIO pins are configured for I²C. See Section 14.61,

“set_gpio_cfg” for more information on configuring GPIO.

14.76. i2c_write_byte

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Transmit one byte to an I²C slave device. This also generates the I²C start and stop conditions. If a NACK (Not

Acknowledge) was received from the slave device, the user should handle this and reset the ACK status

variable.

Arguments

Name Type Description

Device address var / literal

(int)

The (7-bit or 10-bit) address of the slave device.

Transmit data var / literal

(int)

Data byte to transmit.

ACK status var [in/out]

(int)

Result of the I²C operation.

0 = ACK received

1 = NACK received for address

2 = NACK received for data

3 = NACK received for address or data

The value of the variable must be 0 before executing this command.


The variable passed for the ACK status argument should be initialized to 0. Otherwise this

command will assume that the previous operation caused a NACK that was not handled by

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 103

the script and will throw the error code 0x4011 .

Example

Write the value 3 to the device with address 0x48. Abort the script if the I²C operation failed.

var a

store_var a 0i ja

i2c_write_byte 0x48 0x03 a

if a != 0i

 abort

endif

14.77. i2c_read_byte

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Receive one byte from an I²C slave device. This also generates the I²C start and stop conditions. If a NACK (Not

Acknowledge) was received from the slave device, the user should handle this and reset the ACK status

variable.

Arguments

Name Type Description

Device address var / literal

(int)

The (7-bit or 10-bit) address of the slave device.

Receive data var

(int)

Variable to store the received byte in.

ACK status var [in/out]

(int)

Result of the I²C operation.

0 = ACK received

1 = NACK received for address

2 = NACK received for data

3 = NACK received for address or data

The value of the variable must be 0 before executing this command.


The variable passed for the ACK status argument should be initialized to 0. Otherwise this

command will assume that the previous operation caused a NACK that was not handled by

the script and will throw the error code 0x4011 .

Example

Read one byte of data from device 0x48 and store it in variable d . Abort the script if the I²C operation failed.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 104

var a

var d

store_var a 0i ja

i2c_read_byte 0x48i d a

if a != 0i

 abort

endif

14.78. i2c_write

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Write one or more bytes to an I²C slave device. This also generates the I²C start and stop conditions. If a NACK

(Not Acknowledge) was received from the slave device, the user should handle this and reset the ACK status

variable.

Arguments

Name Type Description

Device address var / literal

(int)

The (7-bit or 10-bit) address of the slave device.

Transmit data array

(int)

Reference to an array that contains the data to transmit.

Transmit count var / literal

(int)

Number of bytes to transmit.

Minimum value = 1, maximum value is 255 or size of the array.

ACK status var [in/out]

(int)

Result of the I²C operation.

0 = ACK received

1 = NACK received for address

2 = NACK received for data

3 = NACK received for address or data

The value of the variable must be 0 before executing this command.


The variable passed for the ACK status argument should be initialized to 0. Otherwise this

command will assume that the previous operation caused a NACK that was not handled by

the script and will throw the error code 0x4011 .

Example

Write the values 12 and 34 to the I²C slave device with address 0x48.

var a

store_var a 0i ja

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 105

array w 2

array_set w 0i 12i

array_set w 1i 34i

i2c_write 0x48i w 2 a

14.79. i2c_read

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Read one or more bytes from an I²C slave device. This also generates the I²C start and stop conditions. If a

NACK (Not Acknowledge) was received from the slave device, the user should handle this and reset the ACK

status variable.

Arguments

Name Type Description

Device address var / literal

(int)

The (7-bit or 10-bit) address of the slave device.

Received data array

(int)

Reference to an array to store received data in.

Receive count var / literal

(int)

Number of bytes to receive.

Minimum value = 1, maximum value is 255 or size of the array.

ACK status var [in/out]

(int)

Result of the I²C operation.

0 = ACK received

1 = NACK received for address

2 = NACK received for data

3 = NACK received for address or data

The value of the variable must be 0 before executing this command.


The variable passed for the ACK status argument should be initialized to 0. Otherwise this

command will assume that the previous operation caused a NACK that was not handled by

the script and will throw the error code 0x4011 .

Example

Read 4 bytes from the I²C slave device with address 0x48 and store them in array r .

var a

store_var a 0i ja

array r 4

i2c_read 0x48i r 4 a

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 106

14.80. i2c_write_read

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Write to and read from an I²C slave device. This also generates the I²C start and stop conditions. In contrast with

i2c_read and i2c_write , this command does not generate a STOP condition between writing and reading. If a

NACK (Not Acknowledge) was received from the slave device, the user should handle this and reset the ACK

status variable.

Arguments

Name Type Description

Device address var / literal

(int)

The (7-bit or 10-bit) address of the slave device.

Transmit data array

(int)

Reference to an array that contains the data to transmit.

Transmit count var / literal

(int)

Number of bytes to transmit.

Minimum value = 1, maximum value is 255 or size of the array.

Received data array

(int)

Reference to an array to store the received data in.

Receive count var / literal

(int)

Number of bytes to receive.

Minimum value = 1, maximum value is 255 or size of the array.

ACK status var [in/out]

(int)

Result of the I²C operation.

0 = ACK received

1 = NACK received for address

2 = NACK received for data

3 = NACK received for address or data

The value of the variable must be 0 before executing this command.


The variable passed for the ACK status argument should be initialized to 0. Otherwise this

command will assume that the previous operation caused a NACK that was not handled by

the script and will throw the error code 0x4011 .

Example

Write 2 bytes to the I²C slave device with address 0x48, and then immediately read 4 bytes.

var a

array w 2

array r 4

store_var a 0i ja

array_set w 0i 12i

array_set w 1i 34i

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 107

i2c_write_read 0x48i w 2 r 4 a

14.81. abort

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Abort the current script. If the script contains an on_finished: tag, execution will continue from there, otherwise

the script is terminated immediately without error. If an abort command is executed inside a (measurement)

loop, all endloop commands will still be executed. This means that the usual measurement loop output will be

generated even when the measurement loop is aborted. Once the on_finished: tag has been processed, the

abort command does not have any effect anymore, i.e. code after the on_finished: tag cannot be aborted.

Arguments

-

Example

var a

var d

store_var a 0i ja

i2c_read_byte 0x48i d a

if a != 0

 send_string "NACK received"

 abort

endif

...continue script here if I2C read succeeded

on_finished:

...always execute code after the on_finished: command

14.82. set_scan_dir

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Reverse the direction of the CV scan.

This command allows the CV loop to skip some portion of its potential sweep and change direction early. If the

loop is already stepping in the desired direction, this command does nothing.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 108

Arguments

Name Type Description

Direction var / literal

(int/float)

>0: Set the loop to increase the potential with each step

<0: Set the loop to decrease the potential with each step

0: Set the loop to reverse its direction


When using this command with Direction equal to 0, care must be taken to avoid double

reversals on successive loop iterations. If possible, a value greater than 0 or less than 0

should be used instead.

Example

var c

var p

meas_loop_cv p c 0 1 -1 100m 1

 if c > 10m

 # If more than 10mA current, start scanning downwards immediately

 set_scan_dir -1

 endif

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

14.83. timer_start

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Start the timer.

A high-resolution timer is available to conveniently measure (execution) time. The timer is initialized at 0 when the

script execution starts, and everytime the timer_start command is executed. Because of this, it is less

susceptible to decreasing accuracy, and only one MethodSCRIPT variable is necessary to determine the time

difference between two moments in the script. The timer value can be read using the timer_get command.

Arguments

-

Example

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 109

timer_start

14.84. timer_get

MethodSCRIPT 1.2

EmStat Pico Y

EmStat4 Y

Get the timer value. This returns the time relative to the last call to timer_start (or to the start of the script

otherwise). This method can be called multiple times without changing the starting moment.

Arguments

Name Type Description

Relative time var [out]

(float)
The time relative to the last timer_start command.

The VarType of this variable will be set to VT_TIME (eb).

Example

var t

timer_start

...Do something interesting that takes a bit of time here...

timer_get t

pck_start

Add a as a timestamp

pck_add t

...Add other package data...

pck_end


Due to floating-point number limitations the resolution is dependent on the returned time

value. For a time resolution of less than 1 ms, the measured time should not exceed 1 hour.

14.85. set_channel_sync

MethodSCRIPT 1.3

EmStat Pico N

EmStat4 Y

Enable or disable channel synchronization.

On multi-channel devices that support it, the set_channel_sync can be used to synchronize measurements

between multiple channels. When synchronization is enabled the slave device will wait until the master enables

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 110

synchronisation. After that, the slave and master will synchronize their measurement loop start and iterations.


When synchronization is enabled, the master will wait 100 ms before starting a measurement

loop, to make sure the slave devices are ready to start.

Arguments

Name Type Description

Sync enable uint8 0: Disable syncing

1: Enable syncing

Example

Enable syncing

set_channel_sync 1

14.86. set_acquisition_frac

MethodSCRIPT 1.3

EmStat Pico Y

EmStat4 Y

Set the fraction of the iteration time to use for measurement. This only applies to measurement loops, and the

iteration time is determined by the measurement loop command arguments. When multiple signals are to be

measured, the acquisition time is shared between them. The fraction must be greater than 0 and smaller than 1.

The following figure shows the time that the Analog-to-Digital Conversion (ADC) is active, for two different

settings of the acquisition fraction:

The actual applied fraction could be influenced by the set_acquisition_frac_autoadjust command. To

prevent this, disable the auto adjustment by setting the frequency to 0.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 111

The set_pgstat_mode command initializes the fraction to the default value of 0.25 (= 25%). To change the

fraction, this command should therefore be used after set_pgstat_mode .


A larger fraction means that less time is available for other commands in the measurement

loop to be executed, which could result in timing issues if the remaining time is too short.

Make sure to check the "status" metadata (see Table 4, “Metadata types.”) to verify that the

loop timing was met.

Arguments

Name Type Description

Fraction var / literal

(float)

The fraction (a value between 0 and 1) of the iteration time to use for

measurement.

Example

Set acquisition fraction to 25%.

set_acquisition_frac 250m

14.87. set_acquisition_frac_autoadjust

MethodSCRIPT 1.4

EmStat Pico -

EmStat4 Y

Filter out the given frequency by automatically adjusting acquisition times. The acquisition time is the time in

which the signal is actually measured during an iteration. This works on the principle that by adjusting this time

to a multiple of the period of a frequency, this frequency is filtered out.

The set_pgstat_mode command sets the filtered frequency to a default value of 10 Hz, which will filter out both

50 and 60 Hz. It is recommended to set the frequency to the area’s power grid frequency, so that it can be

enabled at lower acquisition times. To turn off the auto adjustment, a frequency of 0 Hz can be set. The

adjustment will only be applied if the set frequency is lower than 1 / (acquisition time * 2) . For CA and

OCP, it is applied if the frequency is at least equal to 1 / acquisition time .

The acquisition time is determined by:

• the set_acquisition_frac command (by default 25%),

• the interval of the measurement, and

• the number of variables to be measured.

This command does not apply to the meas , meas_loop_eis , meas_loop_geis and meas_loop_acv commands.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 112

Arguments

Name Type Description

Frequency var / literal

(float)

The acquisition auto adjust frequency.

Example

Set acquisition auto adjust frequency to filter out 50 Hertz.

set_acquisition_frac_autoadjust 50

14.88. set_ir_comp

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Set resistance to be compensated by iR compensation.

Compensate an ohmic drop (also known as iR drop) by increasing the WE potential based on the WE current.

This can be used to correct for an unwanted voltage drop between the WE and RE electrodes. It is only

necessary when the ohmic drop is significant when compared to the WE potential. iR compensation is only

possible if the resistance over which this voltage drop occurs is known and constant.


The EIS technique can be used to determine frequency independent impedances between

RE and WE. This is a way of isolating the impedance that behaves like a pure resistor (at

least over frequency), which implies it is eligible for iR compenstation. In most cells, this is the

lowest impedance point in the Nyquist plot where the imaginary impedance (Z'') is zero.

 Compensating for large iR drops can cause the system to become unstable.

EmStat4

iR compensation is only supported on an EmStat4X that is licensed for iR compensation.

Arguments

Name Type Description

Resistance var / literal

(float)

The resistance to compensate for in Ohms

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 113

https://www.palmsens.com/knowledgebase-article/ohmic-drop

Example

Compensate for the voltage drop over a resistance of 100 Ohms between RE and WE.

set_ir_comp 100

14.89. set_e_aux

MethodSCRIPT 1.4

EmStat Pico -

EmStat4 Y

Set the voltage on the AUX DAC.

Arguments

Name Type Description

Voltage var / literal

(float)

Output voltage.

Example

set_e_aux a

14.90. mux_config

MethodSCRIPT 1.4

EmStat Pico -

EmStat4 Y

Configure a multiplexer to use in MethodSCRIPT. This tells the instrument which multiplexer (mux) is connected

and which settings to set. Configuring the multiplexer will configure GPIO pins designated for that particular

multiplexer. When the multiplexer type is set to none, the designated GPIO pins for the previously selected mux

are switched back to input.

Arguments

Name Type Description

Mux type var / literal

(int)

The multiplexer type, see Table 11, “Mux type values”

Config literal

(int)

MUX configuration as bit mask, see Table 12, “Mux configuration fields”

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 114

Table 11. Mux type values

ID Multiplexer type

0 None

1 Original MUX8

2 Original MUX16

3 MUX8-R2

4 Multiplexer for EmStat Pico, 16 channel

5 Multiplexer for EmStat Pico, 256 channel matrix

Configuration options are defined to be standard across all multiplexers. However, not all options can be set

(automatically) on all multiplexer. Please resort to the manual of the particular multiplexer to find out which

options are available.

Table 12. Mux configuration fields

Mask Option

0x0002 Switch box 1

0x0004 Switch box 2

0x0008 OCP mode enable

0x0010 Common RE and CE

0x0020 Connect RE to CE

0x0040 Connect SE to WE

0x0180 WE mode (0x0000 = float, 0x0100 = GND, 0x0180 = standby voltage)

Example

The following example demonstrates configuring the MUX8-R2 to be enabled with RE connected to CE, and WE

to GND.

mux_config 3i 0x0120

14.91. mux_get_channel_count

MethodSCRIPT 1.4

EmStat Pico -

EmStat4 Y

Get the number of channels on the multiplexer setup. Different multiplexers can have a different number of

channels and this command should help making scripts more universal. The returned number of channels is the

number provided by the multiplexer rather than the number of channels actually connected to a solution.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 115

In case of the MUX8-R2, this command will give the total number of channels available in the chain. So for three

MUX8-R2s in daisy-chain configuration, it will return 24 channels.

Arguments

Name Type Description

Number of

channels

var [out]

(int)

Variable to store the total available number of channels

The VarType of this variable will be set to VT_UNKNOWN (aa).

Example

Store the number of available mux channels in variable n .

var n

mux_get_channel_count n

14.92. mux_set_channel

MethodSCRIPT 1.4

EmStat Pico -

EmStat4 Y

Select channel on the multiplexer. The multiplexer has to be configured with mux_config before selecting.

Arguments

Name Type Description

Channel var / literal

(int)

The channel to select (starting from 1)

Example

Select channel 3 on the MUX.

mux_set_channel 3i

14.93. alter_vartype

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 116

Alter the VarType of a variable.

Arguments

Name Type Description

Variable var [out]

(int, float)

Variable reference.

Variable Type VarType The type identifier for this value, see Chapter 7, Variable types.

Example

Alter the type of variable a to VT_MISC_GENERIC1 .

alter_vartype a ja

14.94. notify_led

MethodSCRIPT 1.5

EmStat Pico -

EmStat4 Y

Notify the user of a user-defined event, using the LED. This is intended as a generic way to notify the user of test

results, errors, the progress of the measurement, or other events. Because different devices have different LED

(color) availability, the device will choose the best way to signal each event type. Notifications are persistant

between script runs.

Arguments

Name Type Description

Notify mode uint16 Notify type. See tables below for device specific behavior.

0 = Clear notifications

1 = Idle

2 = Busy

3 = Attention

4 = Test pass

5 = Test fail

6 = Warning

7 = Error

EmStat4

The EmStat4 will use the multicolor LED for all status notifications. Default LED behavior is overridden by

notifications.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 117

Notify

type

Mode Behavior description

0 Clear notifications Default LED behavior

1 Idle Solid blue LED

2 Busy Solid red LED

3 Attention Solid white LED

4 Test pass Solid green LED

5 Test fail Solid red LED

6 Warning Solid yellow LED

7 Error Solid yellow LED

EmStat Pico

The EmStat Pico will use the blue and red LED for all status notifications. Default LED behavior is overridden by

notifications.

Notify

type

Mode Behavior description

0 Clear notifications Default LED behavior

1 Idle Red LED off, solid blue LED

2 Busy Solid red LED, solid blue LED

3 Attention Solid red LED, blue LED off

4 Test pass Red LED off, solid blue LED

5 Test fail Solid red LED, blue LED off

6 Warning Solid red LED, blue LED off

7 Error Solid red LED, blue LED off

Example

Notify the user that a measurement is ongoing. On the EmStat4 and EmStat Pico this turns on the red LED.

notify_led 2

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 118

Chapter 15. MethodSCRIPT examples

These examples can be used on any device that supports MethodSCRIPT, but they contain some commands

that are device-specific for the EmStat Pico. These commands will be ignored on devices that do not use them.

15.1. EIS example

The following example script runs an EIS scan from 200 kHz down to 200 Hz over 11 points. After each point a

data packet will be sent containing the: frequency, Z-real, Z-imaginary variables. The amplitude of the sine is set

to 10 mV and no DC potential is applied.

var f

var r

var i

Select channel 0.

set_pgstat_chan 0

High speed mode is required for EIS.

set_pgstat_mode 3

Autorange starting at 1 mA down to 10 uA.

set_autoranging ba 10u 1m

Cell must be on to do measurements.

cell_on

Run actual EIS measurement.

meas_loop_eis f r i 10m 200k 200 11 0

 # Send measurement package containing frequency, Z-real and Z-imaginary.

 pck_start

 pck_add f

 pck_add r

 pck_add i

 pck_end

endloop

Turn cell off when finished or aborted.

on_finished:

cell_off

Example output

M000D ← start of measurement loop

Pdc8030D40 ;ccAAE483Fm,14,288;cd7FD3127 ,14,288 ← data package

... ← more data packages

Pdc8030D3Fm;cc80EDA04 ,14,287;cd9751491m,14,287 ← data package

* ← end of measurement loop

 ← newline indicating end of script

15.2. LSV example

The following example script runs an LSV from -0.5 V to 1.5 V in approximately 200 steps of 10 mV. The scan

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 119

rate is set to 100 mV/s. After each step, a data packet will be sent containing the set WE potential and the

measured WE current. The measured WE current will be used to autorange.

var c

var p

Select channel 0.

set_pgstat_chan 0

Low speed mode is fast enough.

set_pgstat_mode 2

Select bandwidth of 40 for 10 points per second.

set_max_bandwidth 40

Set up potential window between -0.5 V and 1.5 V, otherwise

the max potential would be 1.1 V for low speed mode.

set_range_minmax da -500m 1500m

Set current range to 1 mA.

set_range ba 1m

Enable autoranging, between current of 100 uA and 5 mA.

set_autoranging ba 100u 5m

Turn cell on for measurements.

cell_on

Equilibrate at -0.5 V for 5 seconds, using a CA measurement.

meas_loop_ca p c -500m 500m 5

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV

and a scan rate of 100 mV/s.

meas_loop_lsv p c -500m 1500m 10m 100m

 # Send package containing set potential and measured WE current.

 pck_start

 pck_add p

 pck_add c

 pck_end

endloop

Turn off cell when done or aborted.

on_finished:

cell_off

Example output

M0007 ← start of measurement loop (CA)

Pda7F85E36u;ba7F77484p,14,20B ← data package

... ← more data packages

Pda7F85E36u;ba7F77484p,14,20B ← data package

* ← end of measurement loop (CA)

M0000 ← start of measurement loop (LSV)

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 120

Pda816E55Fu;ba816DB89p,14,207 ← data package

... ← more data packages

Pda816E55Fu;ba816DB89p,14,207 ← data package

* ← end of measurement loop (LSV)

 ← newline indicating end of script

15.3. SWV example

The following example script runs a SWV from -0.5 V to 0.5 V with steps of 10 mV in 101 steps. After each step,

a data packet will be sent containing the WE potential for that step and current resulting from the SWV

measurement.

var c

var p

var f

var g

set_pgstat_chan 0

set_pgstat_mode 2

Set maximum required bandwidth based on frequency * 4.

However, since SWV measures 2 datapoints, we have to multiply the

bandwidth by 2 as well.

set_max_bandwidth 80

Set potential window.

The max expected potential for SWV is EEnd + EAmp * 2 - EStep.

This measurement would also work without this command since it

stays within the default potential window of -1.1 V to 1.1 V.

set_range_minmax da -500m 690m

Set current range for a maximum expected current of 2 uA.

set_range ba 2u

Disable autoranging.

set_autoranging ba 2u 2u

Turn cell on for measurement.

cell_on

Perform SWV.

meas_loop_swv p c f g -500m 500m 10m 100m 10

 # Send package with set potential, forward current - reverse current,

 # forward current, and reverse current.

 pck_start

 pck_add p

 pck_add c

 pck_add f

 pck_add g

 pck_end

endloop

Turn off cell when done or aborted.

on_finished:

cell_off

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 121

Example output

M0002

Pda7F85E36u;ba8030DDCp,10,202;ba7FB6915p,10,202;ba7F85B39p,10,202

...

Pda807A1CAu;ba8030EB6p,10,202;ba80AB012p,10,202;ba807A15Cp,10,202

*

15.4. Fast CV example

The following example performs a fast CV with 3 scans with 2 averaging passes each. The meas_fast_cv
command stores the set potential and measured current in arrays which are sent using a loop. This example is

intended to run on a 1 kΩ resistor so the current range is set accordingly.

The output can be split into separate scans quite easily because each scan has the same number of points. The

number of points per scan is equal to the total number of points divided by the number of scans. In this case,

we have 15 points and 3 scans resulting in gives 5 points per scan. The variable c holds the total number of

points, so splitting could be done in MethodSCRIPT. The second loop in the example does just that.

Variable for number of points measured

var c

Variable used as loop iterator for points within a scan

var x

Variable used to store temporary data

var t

Array to store set potentials

array p 15i

Array to store measured currents

array i 15i

var s

Variable used as loop iterator for total points processed

var n

Configure instrument to perform this measurement on 1k ohm

set_pgstat_chan 0

set_pgstat_mode 2

set_max_bandwidth 1M

set_range_minmax da -110m 110m

set_range_minmax ba -110u 110u

Set the potentiostat at e_begin and let it settle a bit before applying it on the cell

set_e 0

wait 50m

cell_on

Perform the actual measurement. Note that this does not have a measurement loop

meas_fast_cv p i c 0 -100m 100m 100m 10 nscans(3) nscans_avg(2)

Points per scan (s) is points total (c) / nscans (3)

copy_var c s

div_var s 3i

store_var n 0i ja

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 122

Loop through scans

loop n < c

 store_var x 0i ja

 send_string "scan separator"

 # Loop through points in scan

 loop x < s

 pck_start meta_msk(0x00)

 # Add index to packet

 pck_add n

 # Add set potential to packet

 array_get p n t

 pck_add t

 # Add measured current to packet

 array_get i n t

 pck_add t

 pck_end

 # Increase indexes

 add_var x 1i

 add_var n 1i

 endloop

endloop

cell_off

Example output

L

Tscan separator

L

Pja8000000i;da8000000 ;ba8022674p

Pja8000001i;da20A34E8n;ba20CCAA8p

Pja8000002i;da8000000 ;ba8024B26p

Pja8000003i;daDF5CB18n;ba801875Fn

Pja8000004i;da8000000 ;ba8024B26p

+

Tscan separator

L

Pja8000005i;da8000000 ;ba8024B26p

Pja8000006i;da20A34E8n;ba20CEF58p

Pja8000007i;da8000000 ;ba8022674p

Pja8000008i;daDF5CB18n;ba801875Fn

Pja8000009i;da8000000 ;ba8024B26p

+

Tscan separator

L

Pja800000Ai;da8000000 ;ba8024B26p

Pja800000Bi;da20A34E8n;ba20CEF58p

Pja800000Ci;da8000000 ;ba8024B26p

Pja800000Di;daDF5CB18n;ba801875Fn

Pja800000Ei;da8000000 ;ba8024B26p

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 123

+

+

Our output has the following format: index;potential;current Scans are separated by the text "scan

separator". MethodSCRIPT also prints an L at the start of each loop and and + at the end of them.

15.5. Fast CA example

The following example performs a Fast CA measurement of 1 ms with an interval time of 1 µs. A potential step

from 100 mV to 200 mV is performed before starting the measurement.

Timestamps are calculated in MethodSCRIPT and added to the data packages, so PSTrace can automatically

plot the current versus time. Note that the timestamps are calculated using multiplication, not addition.

Mathematically it would be the same to add 1 us to the timestamp every iteration. However, due to

accumulation of rounding errors, such an approach could lead to very inaccurate timestamps, and as a

consequenc, a potentially misleading plot. Because the index variable is an integer, it can be incremented

without any rounding issues. The int_to_float command is then necessary to convert a variable from integer

to floating-point format before it can be multiplied with another floating-point number. Finally, the VarType will be

set to eb (VT_TIME) so the host software (e.g. PSTrace) can identify that the variable contains a time.

array currents 1000

var current

var potential

var num_points

var index

var time

set_pgstat_mode 2

set_range ba 200u # set current range to +/- 200 uA

set_max_bandwidth 1G # set bandwidth to 1 GHz

set_e 100m

cell_on

wait 100m

meas_fast_ca potential currents num_points 200m 1u 1m

cell_off

store_var index 0i ja

loop index < num_points

 array_get currents index current

 copy_var index time

 int_to_float time

 alter_vartype time eb

 mul_var time 1u

 pck_start

 pck_add time

 pck_add current

 pck_end

 add_var index 1i

endloop

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 124

Example output

L

Peb8000000 ;baDF23478p,10,212

Peb80F423Fp;baDF2EBF8p,10,212

Peb81E847Fp;baE064608p,10,212

...

Peb80F3688n;ba8030D34n,10,212

Peb80F3A70n;ba8030D7Fn,10,212

Peb80F3E58n;ba8030DA4n,10,212

+

15.6. I²C example — temperature sensor

The following example script demonstrates how to communicate with the ADT7420 temperature sensor (see

datasheet) using I²C. This is the temperature sensor on the EmStat Pico Module. Note that the sensor has I²C

bus address 0x48.

The script will first check the ID of the sensor, then configure it for 16-bit continuous mode, and read and log 40

temperature measurements. This will take approximately 10 seconds. If the script is executed using PSTrace, a

plot of the temperature over time will be shown.

I2C ACK status

var a

byte

var b

loop counter

var i

Status register value

var s

MSB of temperature

var m

LSB of temperature

var l

Time

var t

Read buffer

array r 2

Write buffer

array w 2

Configure GPIO8-9 for I2C (Mode 2)

set_gpio_cfg 0x0300 2

Configure I2C peripheral to 100 kHz clock, 7-bit address.

i2c_config 100k 7

Initialize ACK status at 0.

store_var a 0i ja

Read and check device ID.

array_set w 0i 0x0B

i2c_write_read 0x48 w 1i r 1i a

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 125

https://www.analog.com/en/products/adt7420.html
https://www.analog.com/media/en/technical-documentation/data-sheets/ADT7420.pdf
https://www.palmsens.com/product/oem-emstat-pico-module/

if a != 0i

 abort

endif

array_get r 0i b

if b != 0xCB

 send_string "ERROR: Invalid ID (not an ADT7420 device)"

 abort

endif

Configure the sensor for 16-bit mode with continuous conversion

by writing value 0x80 to address 0x03 (configuration register).

array_set w 0i 0x03

array_set w 1i 0x80

i2c_write 0x48 w 2i a

if a != 0i

 abort

endif

Start timer and logging temperature measurements.

timer_start

store_var i 0i ja

loop i < 40i

 # Read status register until measurement ready.

 array_set w 0i 0x02

 store_var s 0x80 ja

 loop s & 0x80

 i2c_write_read 0x48 w 1i r 1i a

 if a != 0i

 abort

 endif

 array_get r 0i s

 endloop

 # Read timer.

 timer_get t

 # Read temperature value.

 array_set w 0i 0x00

 i2c_write_read 0x48 w 1i r 2i a

 if a != 0i

 abort

 endif

 # Convert temperature.

 array_get r 0i m

 array_get r 1i l

 # Combine MSB + LSB in one variable.

 bit_lsl_var m 8i

 bit_or_var m l

 # Handle negative temperatures.

 if m & 0x8000

 sub_var m 65536i

 endif

 # Convert to float and divide by 128 to get temperature in degrees Celsius.

 int_to_float m

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 126

 div_var m 128

 pck_start

 pck_add t

 pck_add m

 pck_end

 add_var i 1i

endloop

on_finished:

if a == 1i

 send_string "ERROR: I2C address NACK"

elseif a == 2i

 send_string "ERROR: I2C data NACK"

elseif a == 3i

 send_string "ERROR: I2C data or address NACK"

endif

Example output

L ← Start of outer loop (i < 40)

L ← Start of wait loop (wait until measurement ready)

+ ← End of wait loop

Peb803B5BDu;aa934837Cu ← Data package containing time and temperature

L ← Start of wait loop (wait until measurement ready)

+ ← End of wait loop

Peb80767C9u;aa934C086u ← Data package containing time and temperature

L ← Start of wait loop (wait until measurement ready)

+ ← End of wait loop

Peb80B1A11u;aa93464F8u ← Data package containing time and temperature

... ← Inner loop repeated 37 more times

+ ← End of outer loop

15.7. I²C example — real time clock

The below example script demonstrates the use of I²C in combination with the ABLIC S-35390A RTC that can

be found on the EmStat Pico Development Kit. It sets the time and date to the arbitrary value of 2:14 AM 29-08-

2097. Then it will wait 10 seconds and read back the time. See the datasheet of the RTC for a description of the

register formats and how to use it correctly.

var a

var d

store_var a 0i ja

var i

store_var i 0i ja

array r 7i

array w 7i

Year = '97

array_set w 0i 0xE9i

Month = August

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 127

https://www.ablic.com/en/semicon/datasheets/rtc/realtime-clock/s-35390a/
https://www.palmsens.com/product/oem-emstat-pico-development-kit/
https://www.ablic.com/en/doc/datasheet/real_time_clock/S35390A_E.pdf

array_set w 1i 0x10i

Day = 29

array_set w 2i 0x94i

Day of week = friday

array_set w 3i 0xA0i

Hour = 2 AM

array_set w 4i 0x40i

Minute = 14

array_set w 5i 0x88i

Seconds = 0

array_set w 6i 0x00i

Configure I2C GPIOs and set it to 100 kHz clock, 7-bit address

set_gpio_cfg 0x0300i 2

i2c_config 100k 7

Write data to real-time data registers

i2c_write 0x32i w 7i a

Printing the time as it was written.

i2c_read 0x32i r 7i a

store_var i 0i ja

loop i < 7i

 array_get r i d

 pck_start

 pck_add d

 pck_end

 add_var i 1i

endloop

Wait ~10 seconds

send_string "Waiting for the time to change."

wait 9500m

Read data from real-time data registers

i2c_read 0x32i r 7i a

store_var i 0i ja

loop i < 7i

 array_get r i d

 pck_start

 pck_add d

 pck_end

 add_var i 1i

endloop

Example output

L

Paa80000E9i

Paa8000010i

Paa8000094i

Paa80000A0i

Paa8000040i

Paa8000088i

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 128

Paa8000000i

+

TWaiting for the time to change.

L

Paa80000E9i

Paa8000010i

Paa8000094i

Paa80000A0i

Paa8000040i

Paa8000088i

Paa8000090i

+

The raw communication over I²C is displayed below. The top line contains the SCL, the line below that is SDA.

The bottom lines of each row represent the interpreted data.

15.8. I²C example — EEPROM

The following example demonstrates writing to and reading from the 24LC32A EEPROM on the EmStat Pico

Development Kit. It will write a counter to the EEPROM and read it back later. Note that the EEPROM may

require some time to finish the write operation before a read will be successful.

Acknowledge value

var a

var b

Loop variable

var i

Temporary value

var v

store_var a 123i ja

Write array, 2 bytes address + 32 bytes data

array w 34i

Read array, 32 bytes data

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 129

https://www.microchip.com/en-us/product/24LC32A
https://www.palmsens.com/product/oem-emstat-pico-development-kit/
https://www.palmsens.com/product/oem-emstat-pico-development-kit/

array r 32i

Configure I2C with 400 kHz clock and 7-bit address

set_gpio_cfg 0x0300i 2i

i2c_config 400k 7i

EEPROM register address MSB (1) and LSB (64) to form 320

array_set w 0i 1i

array_set w 1i 64i

Write data values 0-32 to bytes 2-34 of the array

store_var i 2i ja

store_var v 0i ja

loop i < 34i

 array_set w i v

 add_var i 1i

 add_var v 1i

endloop

Write to device

store_var b 0i ja

i2c_write 0x50i w 34i b

Handle ACK/NACK

if b != 0i

 send_string "FAILED to write to EEPROM"

 abort

endif

Read EEPROM. Will generate NACK until write is completed.

Variable b is set to 1 to enter the loop.

store_var b 1i ja

loop b != 0i

 # Reset var b so I2C will not fail when receiving b NACK

 store_var b 0i ja

 # Note the address from the write array is reused

 i2c_write_read 0x50i w 2i r 32i b

 send_string "reading EEPROM"

endloop

Print the received data

store_var i 0i ja

loop i < 32i

 pck_start

 array_get r i v

 pck_add v

 pck_end

 add_var i 1i

endloop

Example output

L

+

L

Treading EEPROM

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 130

Treading EEPROM

Treading EEPROM

Treading EEPROM

Treading EEPROM

Treading EEPROM

Treading EEPROM

Treading EEPROM

Treading EEPROM

Treading EEPROM

Treading EEPROM

+

L

Paa8000000i

Paa8000001i

Paa8000002i

Paa8000003i

Paa8000004i

Paa8000005i

Paa8000006i

Paa8000007i

Paa8000008i

Paa8000009i

Paa800000Ai

Paa800000Bi

Paa800000Ci

Paa800000Di

Paa800000Ei

Paa800000Fi

Paa8000010i

Paa8000011i

Paa8000012i

Paa8000013i

Paa8000014i

Paa8000015i

Paa8000016i

Paa8000017i

Paa8000018i

Paa8000019i

Paa800001Ai

Paa800001Bi

Paa800001Ci

Paa800001Di

Paa800001Ei

Paa800001Fi

+

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 131

Chapter 16. Document version changes

Version 1.1 Rev 1

• Added support for EmStat Pico firmware v1.1

• Added "Tags" chapter

• Added Max range pgstat mode for the EmStat Pico

• Added BiPot / Poly WE support

• Added PAD technique

• The e command now replies with an extra \n to separate the script response from the e command

response

• Added ability to use whitespace in script (tabs and spaces)

• Added error code documentation

Version 1.1 Rev 2

• Corrected EIS auto ranging information

• Added information about loop command output

Version 1.1 Rev 3

• Corrected OCP parameters, does not have set potential

• Corrected set_pgstat_chan command example

• Corrected SWV example comment about bandwidth

• Correct loop example "add" command should be add_var

• Corrected inconsistent names for low power / low speed mode

Version 1.1 Rev 4

• Corrected endloop command was sometimes called end_loop

Version 1.2 Rev 1

• Added conditional statements (if , else , elseif , endif)

• Added abort command

• Added breakloop command

• Added external storage (SD Card) commands

• Added new variable types

• Added supported variable types table

• Added bitwise operators

• Added new GPIO commands (get_gpio , set_gpio_cfg , set_gpio_pullup)

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 132

• Added support for integer variables

• Updated error codes

• Added get_time command

• Added timer_start and timer_get commands

• Added set_int , await_int commands

• Added ability to input hexadecimal or binary values

• Added support for arrays

• Added support for specifying what metadata to send in measurement packages

• Added nscans optional parameter for Cyclic Voltammetry

• Added hibernate command

• Added I²C interface

• Added I²C example

Version 1.2 Rev 2

• Added EEPROM example

• Moved EmStat Pico specific information to chapter "device-specific information"

• Added reference to comparator in loop and if command documentation

• Removed outdated warning that meas_loop_eis does not support autoranging

Version 1.3 Rev 1

• Added I²C generic NACK for address or data (for devices that cannot distinguish)

• Added EmStat4 information

• set_autoranging changed having additional VarType parameter

• Added eis_tdd command to retrieve EIS time domain data

• Replaced set_cr and set_potential_range commands with more generic set_range and

set_range_minmax commands

• Added CP technique

• Added LSP technique

• Added Galvanostatic EIS technique

• Added set_i command

• Updated error codes

• Updated features section

• Updated terminology

• set_pgstat_mode now resets all mode settings to default values

• Added set_channel_sync command

• Added bitwise operation commands

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 133

• Added float_to_int and int_to_float commands

• Added galvanostat pgstat mode

• Added set_acquisition_frac command

• Added potential ranges in metadata

Version 1.4 Rev 1

• General document changes:

◦ Rearranged chapters, moved large tables to appendix

◦ Updated document formatting

• Chapter 3:

◦ Clarified relation between device communication protocol and MethodSCRIPT

• Chapter 14:

◦ Added list of supported instruments and MethodSCRIPT versions for each command

◦ Updated documentation of some commands

• Chapter 15:

◦ Updated I²C example scripts

◦ Added links to datasheets of S-35390A (RTC) and ADT7420 (temperature sensor)

◦ Added EEPROM example

• Appendix A:

◦ Updated error codes

◦ Added table mapping instrument firmware versions to MethodSCRIPT versions

◦ Updated variable types

• MethodSCRIPT changes:

◦ Updated line numbers to also include comments

◦ Updated behavior of pck_start / pck_add / pck_end commands

◦ Added Fast Cyclic Voltammetry (FCV) measurement technique (meas_fast_cv command)

◦ Added frequency filtering with set_acquisition_frac_autoadjust command

◦ Added set_e_aux command

◦ Added masked versions of GPIO commands (set_gpio_msk and get_gpio_msk)

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 134

Version 1.5 Rev 1

• Increased array size on EmStat4 from 32768 to 50000 variables

• Added new MethodSCRIPT commands:

◦ Mux commands: mux_config , mux_get_channel_count , and mux_set_channel

◦ AC Voltammetry (ACV) measurement technique: meas_loop_acv

◦ Multi-Sine EIS (MSEIS) measurement technique: meas_ms_eis

◦ Fast CA (FCA) measurement technique: meas_fast_ca

◦ Alternating mux measurement techniques:

▪ CA: meas_loop_ca_alt_mux

▪ CP: meas_loop_cp_alt_mux

▪ OCP: meas_loop_ocp_alt_mux

◦ iR compensation: set_ir_comp

◦ Modulo operation: mod_var

◦ Alter the VarType of a MethodSCRIPT variable: alter_vartype

◦ Output user notifications using the device LED: notify_led

◦ Set scan direction for Cyclic Voltammetry (CV): set_scan_dir

• Added support for interpolated strings (f-strings), see Section 8.7.1, “Interpolated strings”

• Added support for array access syntax, see Section 8.2.1, “Array Access Syntax”

• Added support for auto-incrementing number in file, see Section 14.71, “file_open”

• Added support for multicharacter variable names, see Section 8.1, “var”

• Updated error codes var types

• Fixed example scripts in chapter 3

• Updated eis_opt command to support fast fixed frequency EIS measurements

• Command set_autoranging now responds with an error when given negative inputs

• Added missing galvanostatic mode in Chapter 12, PGStat modes and clarified Section B.1, “PGStat mode

properties”

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 135

Appendix A: Error codes

The following table lists all error codes that can be returned by MethodSCRIPT instruments.


The error codes and their meaning are the same for all instruments and firmware versions.

However, in some cases, the same error condition could result in a different error code when

using another instrument or firmware version.

Table 13. Error code lookup table

Error code Description

0x0001 An unspecified error has occurred

0x0002 An invalid VarType has been used

0x0003 The command was not recognized

0x0004 Unknown register

0x0005 Register is read-only

0x0006 Communication mode invalid

0x0007 An argument has an unexpected value

0x0008 Command exceeds maximum length

0x0009 The command has timed out

0x000B Cannot reserve the memory needed for this var

0x000C Cannot run a script without loading one first

0x000E An overflow has occurred while averaging a measured value

0x000F The given potential is not valid

0x0010 A variable has become either "NaN" or "inf"

0x0011 The input frequency is invalid

0x0012 The input amplitude is invalid

0x0014 Cannot perform OCP measurement when cell on

0x0015 CRC invalid

0x0016 An error has occurred while reading / writing flash

0x0017 The specified flash address is not valid for this device

0x0018 The device settings have been corrupted

0x0019 Authentication error

0x001A Calibration invalid

0x001B This command or part of this command is not supported by the current device

0x001C Step Potential cannot be negative for this technique

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 136

Error code Description

0x001D Pulse Potential cannot be negative for this technique

0x001E Amplitude cannot be negative for this technique

0x001F Product is not licensed for this technique

0x0020 Cannot have more than one high speed and/or max range mode enabled (EmStat Pico)

0x0021 The specified PGStat mode is not supported

0x0022 Channel set to be used as Poly WE is not configured as Poly WE

0x0023 Command is invalid for the selected PGStat mode

0x0024 The maximum number of vars to measure has been exceeded

0x0025 The specified PAD mode is unknown

0x0026 An error has occurred during a file operation

0x0027 Cannot open file, a file with this name already exists

0x0028 Variable divided by zero

0x0029 GPIO pin mode is not known by the device

0x002A GPIO configuration is incompatible with the selected operation

0x002B CRC of received line was incorrect (CRC16-ext)

0x002C ID of received line was not the expected value (CRC16-ext)

0x002D Received line was too short to extract a header (CRC16-ext)

0x002E Settings are not initialized

0x002F Channel is not available for this device

0x0030 Calibration process has failed

0x0032 Critical cell overload, aborting measurement to prevent damage.

0x0033 FLASH ECC error has occurred

0x0034 Flash program operation failed

0x0035 Flash Erase operation failed

0x0036 Flash page/block is locked

0x0037 Flash write operation on protected memory

0x0038 Flash is busy executing last command.

0x0039 Operation failed because block was marked as bad

0x003A The specified address is not valid

0x003B An error has occurred while attempting to mount the filesystem

0x003C An error has occurred while attempting to format the filesystem memory

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 137

Error code Description

0x003D A timeout has occurred during SPI communication

0x003E A timeout has occurred somewhere

0x003F The calibrations registers are locked, write actions not allowed.

0x0040 Memory module not supported.

0x0041 Flash memory format not recognized or supported.

0x0042 This register is locked for current permission level.

0x0043 Register is write-only

0x0044 Command requires additional initialization

0x0045 Configuration not valid for this command

0x0046 The multiplexer was not found.

0x0047 The filesystem has to be mounted to complete this action.

0x0048 This device is not a multi-device, no serial available.

0x004A MCU register access is not allowed, only RAM and peripherals are accessible.

0x004B Runtime (comm) command argument too short to be valid.

0x004C Runtime (comm) command argument has an invalid format.

0x004E Hibernate wake up source is invalid

0x004F Hibernate requires at least one wake up source, none was given.

0x0050 Wake pin for hibernate not configured as input

0x0051 The code provided to the permission register was not valid.

0x0052 An overrun error occurred on a communication interface (e.g. UART).

0x0053 Argument length incorrect for this register.

0x0055 The GPIO pins requested to change do not exist on this instrument.

0x0056 The selected GPIO pin mode is not allowed (by NVM config or device type).

0x0057 The on-board flash module has timed out.

0x0058 Timing error during fast measurement (possibly caused by communication).

0x005A The instrument cannot meet the requested measurement timing.

0x005B The variable type is already being measured.

0x4001 The script command is unknown

0x4004 An unexpected character was encountered

0x4005 The script is too large for the internal script memory

0x4008 This optional argument is not valid for this command

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 138

Error code Description

0x4009 The stored script is generated for an older firmware version and cannot be run

0x400B Measurement loops cannot be placed inside other measurement loops

0x400C Command not supported in current situation

0x400D Scope depth too large

0x400E The command had an invalid effect on scope depth

0x400F Array index out of bounds

0x4010 I2C interface was not initialized with i2c_config command

0x4011 This is an error, NAck flag not handled by script

0x4012 Something unexpected went wrong.

0x4013 I2C clock frequency not supported by hardware

0x4014 Non integer SI vars cannot be parsed from hex or binary representation

0x4016 RTC was selected as wake-up source and selected time is not supported

0x4018 The script has ended unexpectedly.

0x4019 The script command is only valid for a multichannel (combined) device

0x401A The script command cannot be called from within a measurement loop.

0x401B the pck sequence is called wrong

0x401C The maximum amounts of variables per packet has been exceeded.

0x401D The file path is too long for the file system.

0x4020 A timeout has occurred for one of the script commands

0x4021 The mux is not initialized/configured.

0x4022 Measurement loop timing is too fast to use with multiplexer

0x4023 The script command is only valid for a device with iR compensation

0x4024 The resistance value is to big for the whole autorange range

0x4025 The resistance value is to big for current current range

0x4026 The variable already exists when declared

0x4027 This command requires the cell to be enabled with the cell_on command

0x4028 This command requires the cell to be disabled with the cell_off comma

0x4029 The technique requires that at least one step should be made

0x402A The variable names do not fit in memory anymore, try using shorter names.

0x402B The variable name did not start with 'a'-'z' or otherwise contained anything other than 'a'-

'z', '0'-'9' and '_'.

0x402C The variable name is too long to be processed.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 139

Error code Description

0x402D The file mode is invalid.

0x402E The file mode does not support a counter in the file path.

0x402F The file path with the maximum counter value already exists.

0x4030 There are too many files open already.

0x4031 The specified multi device type is not defined.

0x4032 Cannot set the potential (or potential range) within the active measurement loop.

0x4033 Cannot set the current (or current range) within the active measurement loop.

0x4034 The used feature is not licensed on this product.

0x4200 MScript argument value cannot be negative for this command

0x4201 MScript argument value cannot be positive for this command

0x4202 MScript argument value cannot be zero for this command

0x4203 MScript argument value must be negative for this command (also not zero)

0x4204 MScript argument value must be positive for this command (also not zero)

0x4205 MScript argument value is outside the allowed bounds for this command

0x4206 MScript argument value cannot be used for this specific instrument

0x4207 MScript argument datatype (float/int) is invalid for this command

0x4208 MScript argument reference was invalid (not 'a' - 'z')

0x4209 MScript argument variable type is invalid or not supported for this command

0x420A An unexpected, additional, (optional) MScript argument was provided

0x420B MScript argument variable is not declared

0x420C MScript argument is of type var, which is not supported by this command

0x420D MScript argument is of type literal, which is not supported by this command

0x420E MScript argument is of type array, which is not supported by this command

0x420F MScript argument array size is insufficient

0x4210 An f-string contains an opening brace that is never closed

0x7FFF A fatal error has occurred, the device must be reset

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 140

Appendix B: Device-specific information

B.1. PGStat mode properties

This section shows the most important changes in specifications depending on the selected PGStat mode. See

Chapter 12, PGStat modes for a description of all PGStat modes.

B.1.1. EmStat4 HR


The EmStat4 accepts the Low Speed, High Speed, and Max Range modes, but there is no

functional difference between these modes.

Table 14. Potentiostat mode properties for EmStat4 HR.

Parameter Min. value Max. value

Bandwidth - 500 kHz

Potential range -6.0 V 6.0 V

Dynamic potential window -6.0 V 6.0 V

Table 15. Galvanostat mode properties for EmStat4 HR.

Parameter Min. value Max. value

Bandwidth - 500 kHz

Current range -200 mA 200 mA

B.1.2. EmStat4 LR


The EmStat4 accepts the Low Speed, High Speed, and Max Range modes, but there is no

functional difference between these modes.

Table 16. Potentiostat mode properties for EmStat4 LR.

Parameter Value min Value max

Bandwidth - 500 kHz

Potential range -3.0 V 3.0 V

Dynamic potential window -3.0 V 3.0 V

Table 17. Galvanostat mode properties for EmStat4 LR.

Parameter Min. value Max. value

Bandwidth - 500 kHz

Current range -30 mA 30 mA

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 141

B.1.3. EmStat Pico

Table 18. EmStat Pico low speed mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 100 Hz

Potential range -1.25 V 2.0 V

Dynamic potential window 2.2 V 2.2 V

Table 19. EmStat Pico high speed mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 200 kHz

Potential range -1.7 V 2.0 V

Dynamic potential window 1.214 V 1.214 V

Table 20. EmStat Pico max range mode properties.

Parameter Min. value Max. value

Bandwidth 0.016 Hz 100 Hz

Potential range -1.7 V 2.0 V

Dynamic potential window 2.6 V 2.6 V

B.2. EIS properties

Table 21. EmStat4 potentiostatic EIS properties.

Parameter Value

Max. amplitude (VRMS) 0.900 V

Max. frequency 200 kHz

Table 22. EmStat4 galvanostatic EIS (GEIS) properties.

Parameter Value

Max. amplitude (ARMS) 0.9 x CR1

Max. frequency 200 kHz

1 With GEIS, the maximum amplitude is a factor of the selected current range, e.g., at 10 mA CR the max. (RMS)

amplitude is 9 mA.

Table 23. EmStat Pico potentiostatic EIS properties.

Parameter Value

Max. amplitude (VRMS) 0.429 V

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 142

Parameter Value

Max. frequency 200 kHz

B.3. Current ranges

B.3.1. EmStat4 LR

Table 24. EmStat4 LR potentiostat current ranges.

Current range Index

1 nA 0x03

10 nA 0x06

100 nA 0x09

1 µA 0x0C

10 µA 0x0F

100 µA 0x12

1 mA 0x15

10 mA 0x18

Table 25. EmStat4 LR galvanostat current ranges.

Current range Index

10 nA 0x06

1 µA 0x0C

100 µA 0x12

10 mA 0x18

B.3.2. EmStat4 HR

Table 26. EmStat4 HR potentiostat current ranges.

Current range Index

100 nA 0x09

1 µA 0x0C

10 µA 0x0F

100 µA 0x12

1 mA 0x15

10 mA 0x18

100 mA 0x1B

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 143

Table 27. EmStat4 HR galvanostat current ranges.

Current range Index

1 µA 0x0C

100 µA 0x12

10 mA 0x18

100 mA 0x1B

B.3.3. EmStat Pico

Table 28. EmStat Pico low speed mode.

Current range Index

100 nA 0x0

1.95 µA 0x1

3.91 µA 0x2

7.81 µA 0x3

15.63 µA 0x4

31.25 µA 0x5

62.5 µA 0x6

125 µA 0x7

250 µA 0x8

500 µA 0x9

1 mA 0xA

5 mA 0xB

Table 29. EmStat Pico high speed mode.

Current range Index

100 nA 0x80

1 µA 0x81

6.25 µA 0x82

12.5 µA 0x83

25 µA 0x84

50 µA 0x85

100 µA 0x86

200 µA 0x87

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 144

Current range Index

1 mA 0x88

5 mA 0x89

Table 30. EmStat Pico max range mode.

Current range Index

100 nA 0x80

1 µA 0x81

6.25 µA 0x82

12.5 µA 0x83

25 µA 0x84

50 µA 0x85

100 µA 0x86

200 µA 0x87

1 mA 0x88

5 mA 0x89

B.4. Potential ranges

Table 31. EmStat4 HR/LR galvanostat potential ranges.

Potential range Index

50 mV 2

100 mV 3

200 mV 4

500 mV 5

1 V 6

B.5. Supported variable types for meas command

Table 32. Supported variable types EmStat4.

Name ID

VT_POTENTIAL ab

VT_POTENTIAL_CE ac

VT_POTENTIAL_RE ae

VT_POTENTIAL_WE_VS_CE ag

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 145

Name ID

VT_POTENTIAL_AIN0 as

VT_CURRENT ba

Table 33. Supported variable types EmStat Pico.

Name ID

VT_POTENTIAL ab

VT_POTENTIAL_CE ac

VT_POTENTIAL_RE ae

VT_POTENTIAL_WE_VS_CE ag

VT_POTENTIAL_AIN0 as

VT_POTENTIAL_AIN1 at

VT_POTENTIAL_AIN2 au

VT_CURRENT ba

B.6. Device I/O pin configurations

Table 34. EmStat4 I/O pin configuration.

Bitmask Pin name Mode 0 Mode 1

0x0001 GPIO0 Digital Input Digital Output

0x0002 GPIO1 Digital Input Digital Output

0x0004 GPIO2* Digital Input Digital Output

0x0008 GPIO3 Digital Input Digital Output

0x0010 GPIO4 Digital Input Digital Output

0x0020 GPIO5_WAKE Digital Input Digital Output

0x0040 GPIO6_PWM Digital Input Digital Output

* On some devices, such as the EmStat4R / EmStat4 Go, GPIO2 is used for the external cell LED and cannot be

used as general-purpose I/O pin.

Table 35. EmStat Pico I/O pin configuration.

Bitmask Pin name Mode 0 Mode 1 Mode 2

0x0001 GPIO0_PWM Digital Input Digital Output Shutdown (output)

0x0002 GPIO1_SPI_MISO† Digital Input Digital Output SPI flash memory

0x0004 GPIO2_SPI_CLK† Digital Input Digital Output SPI flash memory

0x0008 GPIO3_SPI_MOSI† Digital Input Digital Output SPI flash memory

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 146

Bitmask Pin name Mode 0 Mode 1 Mode 2

0x0010 GPIO4_SPI_CS0† Digital Input Digital Output SPI flash memory

0x0020 GPIO5 Digital Input Digital Output

0x0040 GPIO6* Digital Input Digital Output

0x0080 GPIO7_WAKE Digital Input Digital Output Wake from sleep (Active low)

0x0100 I2C_SCL Digital Input Digital Output I²C

0x0200 I2C_SDA Digital Input Digital Output I²C

* On some devices, such as the Sensit BT, GPIO6 is used for the external cell LED and cannot be used as

general-purpose I/O pin.
† For devices with on-board storage memory, such as the Sensit BT, GPIO1–4 are reserved and cannot be used

as general-purpose I/O pins.

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 147

Appendix C: Variable types

The following table lists all variable types that are defined in MethodSCRIPT. All IDs not listed in this table are

reserved for future use. It is not recommended to use other variable types than the ones listed in this table.

Table 36. Variable types lookup table

Name ID Description

VT_UNKNOWN aa Unknown (not initialized)

VT_POTENTIAL ab Measured WE voltage vs RE

VT_POTENTIAL_CE ac Measured CE voltage vs GND

VT_POTENTIAL_SE ad Measured SE voltage vs GND

VT_POTENTIAL_RE ae Measured RE voltage vs GND

VT_POTENTIAL_WE af Measured WE vs GND

VT_POTENTIAL_WE_VS_CE ag Measured WE voltage vs CE

VT_POTENTIAL_AIN0 as Measured analog input 0 voltage

VT_POTENTIAL_AIN1 at Measured analog input 1 voltage

VT_POTENTIAL_AIN2 au Measured analog input 2 voltage

VT_CURRENT ba Measured WE current

VT_PHASE ca Measured phase

VT_IMP cb Measured impedance

VT_ZREAL cc Measured real part of complex impedance

VT_ZIMAG cd Measured imaginary part of complex impedance

VT_EIS_TDD_E ce Measured RE potential Time Domain Data

VT_EIS_TDD_I cf Measured WE current Time Domain Data

VT_EIS_FS cg Sampling frequency used for EIS measurement

VT_EIS_E_AC ch Measured AC potential

VT_EIS_E_DC ci Measured DC potential

VT_EIS_I_AC cj Measured AC current

VT_EIS_I_DC ck Measured DC current

VT_CELL_SET_POTENTIAL da Set control value for WE potential

VT_CELL_SET_CURRENT db Set control value for WE current

VT_CELL_SET_FREQUENCY dc Set value for frequency

VT_CELL_SET_AMPLITUDE dd Set value for ac amplitude

VT_TIME eb Time in seconds

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 148

Name ID Description

VT_PIN_MSK ec Binary pin bitmask, indicating which pins are high / low

VT_TEMPERATURE ed Temperature in degrees Celsius

VT_COUNT ee Count (e.g. number of data points)

VT_CURRENT_GENERIC1 ha Generic current 1

VT_CURRENT_GENERIC2 hb Generic current 2

VT_CURRENT_GENERIC3 hc Generic current 3

VT_CURRENT_GENERIC4 hd Generic current 4

VT_POTENTIAL_GENERIC1 ia Generic potential 1

VT_POTENTIAL_GENERIC2 ib Generic potential 2

VT_POTENTIAL_GENERIC3 ic Generic potential 3

VT_POTENTIAL_GENERIC4 id Generic potential 4

VT_MISC_GENERIC1 ja Miscellaneous value 1 (reserved for user code)

VT_MISC_GENERIC2 jb Miscellaneous value 2 (reserved for user code)

VT_MISC_GENERIC3 jc Miscellaneous value 3 (reserved for user code)

VT_MISC_GENERIC4 jd Miscellaneous value 4 (reserved for user code)

MethodSCRIPT v1.5

Last document update: 2024-03-25

Page | 149

	MethodSCRIPT v1.5
	Table of Contents
	Chapter 1. Introduction
	1.1. Terminology

	Chapter 2. Features
	2.1. Implemented features
	2.2. Planned future features
	2.3. Supported devices

	Chapter 3. Script format
	3.1. Relation between MethodSCRIPT and communication protocol

	Chapter 4. MethodSCRIPT variables
	4.1. MethodSCRIPT variables
	4.2. Script command variables
	4.3. Measurement data package variables

	Chapter 5. Interpreting measurement data packages
	5.1. Package format
	5.2. Variable sub package format
	5.3. Package parsing example

	Chapter 6. Measurement loop commands
	6.1. Introduction
	6.2. Measurement loop example
	6.3. Measurement loop output

	Chapter 7. Variable types
	Chapter 8. Script argument types
	8.1. var
	8.2. array
	8.2.1. Array Access Syntax

	8.3. literal
	8.4. VarType
	8.5. integer types (uint8, uint16, uint32)
	8.6. condition expressions
	8.7. string
	8.7.1. Interpolated strings

	8.8. Optional arguments

	Chapter 9. Optional arguments
	9.1. poly_we
	9.2. nscans
	9.3. nscans_avg
	9.4. nscans_equil
	9.5. meta_msk
	9.6. eis_tdd
	9.7. eis_opt
	9.8. eis_acdc
	9.9. ms_eis_acdc

	Chapter 10. Tags
	10.1. on_finished:

	Chapter 11. Error handling
	Chapter 12. PGStat modes
	12.1. PGStat mode off
	12.2. PGStat mode low speed
	12.3. PGStat mode high speed
	12.4. PGStat mode max range
	12.5. PGStat mode poly_we
	12.6. PGStat mode galvanostatic

	Chapter 13. Script command summary
	13.1. Command summary
	13.2. MethodSCRIPT version on instruments

	Chapter 14. Script command description
	14.1. var
	14.2. store_var
	14.3. array
	14.4. array_set
	14.5. array_get
	14.6. copy_var
	14.7. add_var
	14.8. sub_var
	14.9. mul_var
	14.10. div_var
	14.11. mod_var
	14.12. bit_and_var
	14.13. bit_or_var
	14.14. bit_xor_var
	14.15. bit_lsl_var
	14.16. bit_lsr_var
	14.17. bit_inv_var
	14.18. int_to_float
	14.19. float_to_int
	14.20. set_e
	14.21. set_i
	14.22. wait
	14.23. set_int
	14.24. await_int
	14.25. loop
	14.26. endloop
	14.27. breakloop
	14.28. if, elseif, else, endif
	14.29. meas
	14.30. meas_loop_lsv
	14.31. meas_loop_acv
	14.32. meas_loop_lsp
	14.33. meas_loop_cv
	14.34. meas_fast_cv
	14.35. meas_loop_dpv
	14.36. meas_loop_swv
	14.37. meas_loop_npv
	14.38. meas_loop_ca
	14.39. meas_loop_ca_alt_mux
	14.40. meas_fast_ca
	14.41. meas_loop_cp
	14.42. meas_loop_cp_alt_mux
	14.43. meas_loop_pad
	14.44. meas_loop_ocp
	14.45. meas_loop_ocp_alt_mux
	14.46. meas_loop_eis
	14.47. meas_loop_geis
	14.48. meas_ms_eis
	14.49. set_autoranging
	14.50. pck_start
	14.51. pck_add
	14.52. pck_end
	14.53. set_max_bandwidth
	14.54. set_cr (deprecated)
	14.55. set_range
	14.56. set_range_minmax
	14.57. cell_on
	14.58. cell_off
	14.59. set_pgstat_mode
	14.60. send_string
	14.61. set_gpio_cfg
	14.62. set_gpio_pullup
	14.63. set_gpio
	14.64. get_gpio
	14.65. set_gpio_msk
	14.66. get_gpio_msk
	14.67. set_pot_range (deprecated)
	14.68. set_pgstat_chan
	14.69. set_poly_we_mode
	14.70. get_time
	14.71. file_open
	14.72. file_close
	14.73. set_script_output
	14.74. hibernate
	14.75. i2c_config
	14.76. i2c_write_byte
	14.77. i2c_read_byte
	14.78. i2c_write
	14.79. i2c_read
	14.80. i2c_write_read
	14.81. abort
	14.82. set_scan_dir
	14.83. timer_start
	14.84. timer_get
	14.85. set_channel_sync
	14.86. set_acquisition_frac
	14.87. set_acquisition_frac_autoadjust
	14.88. set_ir_comp
	14.89. set_e_aux
	14.90. mux_config
	14.91. mux_get_channel_count
	14.92. mux_set_channel
	14.93. alter_vartype
	14.94. notify_led

	Chapter 15. MethodSCRIPT examples
	15.1. EIS example
	15.2. LSV example
	15.3. SWV example
	15.4. Fast CV example
	15.5. Fast CA example
	15.6. I²C example — temperature sensor
	15.7. I²C example — real time clock
	15.8. I²C example — EEPROM

	Chapter 16. Document version changes
	Version 1.1 Rev 1
	Version 1.1 Rev 2
	Version 1.1 Rev 3
	Version 1.1 Rev 4
	Version 1.2 Rev 1
	Version 1.2 Rev 2
	Version 1.3 Rev 1
	Version 1.4 Rev 1
	Version 1.5 Rev 1

	Appendix A: Error codes
	Appendix B: Device-specific information
	B.1. PGStat mode properties
	B.1.1. EmStat4 HR
	B.1.2. EmStat4 LR
	B.1.3. EmStat Pico

	B.2. EIS properties
	B.3. Current ranges
	B.3.1. EmStat4 LR
	B.3.2. EmStat4 HR
	B.3.3. EmStat Pico

	B.4. Potential ranges
	B.5. Supported variable types for meas command
	B.6. Device I/O pin configurations

	Appendix C: Variable types

