EmStat4R

Rugged wireless potentiostat

  • Portable: wireless in a rugged housing
  • Available with connection module for sensor cable or SPE
  • Potential range ±3 V
  • Max. current ±30 mA
  • Optional impedance analyzer: 10 μHz up to 200 kHz
Electrochemical Impedance Spectroscopy (EIS) is an electrochemical technique to measure the impedance of a system in dependence of the AC potentials frequency. With this option you can select the maximum AC frequency for EIS.
Clear
You'll usually get an answer to your quotation request within one business day.

Description

The EmStat4R delivers desktop performance in a rugged enclosure. The EmStat4R is a portable Battery or USB-powered Potentiostat, Galvanostat, and optional a Frequency Response Analyzer (FRA) for Electrochemical Impedance Spectroscopy (EIS). The EmStat4R is great for applications that require low currents, from 30 mA down to picoamps, such as sensor applications. The EmStat4R is controlled with PSTrace for Windows, the Android app PStouch, or you can write your own MethodSCRIPT and control it from any platform or operating system.

Two versions

The EmStat4R is available with a cell cable or SPE connection module. Both versions can be configured with optional EIS/FRA with a maximum frequency of 200 kHz. See specifications for more information.

EmStat4R SNS

EmStat4R SPE

Connection module Cell cable Connection module Screen-printed-electrode
Cell cable included Yes Cell cable included No
Electrode connections WE, RE, CE and ground Electrode connections RE, WE, CE
Connectors 2 mm banana Sensor pitch 2.54 mm
    Maximum sensor width 11 mm
    Allowed sensor thickness Between 0.1 mm and 0.8 mm

 

Always a backup

Always a backup

The EmStat4R is equipped with 500 MB internal storage memory for storing your measurements as a backup. All internally stored measurements can be browsed and transferred back to the PC easily using the PSTrace software for Windows. Your data is always with your instrument wherever you take it.

Standard included

A standard EmStat4R includes a rugged carrying case with:

  • EmStat4R
  • Rugged case
  • USB-C cable
  • Cell cable: high quality, double-shielded cable with 2 mm banana connectors for Working, Counter, Reference electrode and Ground
  • 4 crocodile clips
  • Dummy Cell
  • PSTrace software for Windows (on USB drive)
  • Manual (hardcopy)
  • Quick Start document
  • Calibration report
  • Three year warranty

Techniques

Voltammetric techniques

Linear Sweep Voltammetry (LSV)
In Linear Sweep Voltammetry a potential scan is performed from the begin potential, to the end potential. The voltage during the scan increases with small potential steps. Continue reading
Cyclic Voltammetry (CV)
Cyclic voltammetry is a known method of demonstrating the presence of a substance in a given liquid by drawing a graph with a characteristic wavy line. Continue reading
Fast Cyclic Voltammetry (FCV)
Fast Cyclic Voltammetry is cyclic voltammetry with a very high scan rate up to 1 V per microsecond. Continue reading
AC Voltammetry (ACV)
In AC Voltammetry a potential scan is made with a superimposed sine wave which has a relatively small amplitude of 5 ~ 10 mV and a frequency of 10 to 250 Hz. Continue reading

Pulsed techniques

Differential Pulse Voltammetry (DPV)
In Differential Pulse Voltammetry a potential scan is made using pulses with a constant amplitude of E pulse superimposed on the dc-potential. Continue reading
Square Wave Voltammetry (SWV)
Square Wave Voltammetry is a special version of Differential Pulse Voltammetry is, where the pulse time is equal to half the interval time. Continue reading
Normal Pulse Voltammetry (NPV)
In Normal Pulse Voltammetry (NPV) a potential scan is made by making constantly larger potential steps of pulse. Continue reading

Amperometric techniques

Chronoamperometry (CA)
The instrument applies a constant dc-potential and the current is measured with constant interval times. Continue reading
Zero Resistance Amperometry
A ZRA measures the current flowing through it without adding any resistance. This means the current is measured without the ZRA influencing the current. Continue reading
Chronocoulometry (CC)
Chronocoulometry is an electrochemical technique during which a potential is set. Continue reading
MultiStep Amperometry (MA)
MultiStep Amperometry (MA) is an electrochemical technique which simply allows the user to specify the number of potential steps they want to apply and how long each step should last. Continue reading
Fast Amperometry (FAM)
Fast Amperometry (FAM) is a form of amperometric detection with very high sampling rates or respectively very short interval times. Continue reading
Pulsed Amperometric Detection (PAD)
With Pulsed Amperometric Detection a series of pulses (pulse profile) is periodically repeated. Pulsed Amperometric Detection can be used when higher sensitivity is required. Continue reading
Multiple-Pulse Amperometric Detection (MPAD)
Multiple-Pulse Amperometric Detection (MPAD) is an electrochemical technique that can be used when higher sensitivity is required. Using pulses instead of constant potential might result in higher faradaic currents Continue reading
*

Galvanostatic techniques

Linear Sweep Potentiometry (LSP)
With Linear Sweep Potentiometry, a current scan is performed from the begin current to the end current. Continue reading
Chronopotentiometry (CP)
Chronopotentiometry (CP)is an electrochemical technique in which a controlled current, usually a constant current, is caused to flow between two electrodes; the potential of one electrode is monitored as a function of time with respect to a suitable reference electrode. Continue reading
MultiStep Potentiometry (MSP)
MultiStep Potentiometry allows the user to specify the number of current steps they want to apply and how long each step should last. The potential response is continuously sampled with the specified interval. Continue reading
Open Circuit Potentiometry (OCP)
Open Circuit Potential (OCP) is the potential where no current is flowing, because the circuit is open. Continue reading
Stripping Chronopotentiometry (SCP / PSA)
Stripping Chronopotentiometry (SCP or PSA) starts with a deposition stage at the deposition potential. After this stage, the potential versus time is recorded. In this stage, the potentiostat is switched off and the measurement starts. Continue reading
*

Electrochemical Impedance spectroscopy (EIS)

Electrochemical Impedance spectroscopy (EIS)
Electrochemical Impedance Spectroscopy (EIS) is an electrochemical technique to measure the impedance of a system in dependence of the AC potentials frequency. Continue reading
PEIS - Potential scan (IMPE)
EIS - Fixed potential
GEIS - Fixed current
EIS - Time scan (IMPT)
Fast EIS/GEIS *

Other

Mixed Mode (MM)
Mixed Mode is a flexible technique that allows for switching between potentiostatic, galvanostatic, and open circuit measurements during a single run. Continue reading
Custom techniques (MethodSCRIPT)
Techniques marked with an * will become available with a software update at a later moment.
Missing a technique? See cross-reference list

Specifications

General
dc-potential range
The maximum potential difference, that can be applied between WE and RE.
±3 V
compliance voltage
The compliance voltage is the maximum voltage that can be applied between the working and counter electrode. Another name could be the maximum cell potential. Continue reading
±5 V
maximum current ±30 mA
max. data acquisition rate 1M samples /s
Potentiostat
applied potential resolution 100 µV
applied potential accuracy
The applied potential accuracy describes how close to the real values your applied potential is.
≤ 0.2% ±1 mV offset
current ranges
A potentiostat measures current. For optimal precision, the range between which currents are measured is split into multiple current ranges. A current range defines the maximum current a potentiostat can measure in a certain range. This means it will also determine the resolution, because the number of bits or rather states is fixed, while the current range is variable.
1 nA to 10 mA
8 ranges
measured current resolution
The lowest observable difference between two values that a measurement device can differentiate between.
0.009% of CR (92 fA on 1 nA range)
measured
current accuracy
The current accuracy describes how close to the real values your measured current is.

< 0.2% of current

±20 pA  ±0.2% of range

bandwidth settings

320 Hz, 3.2 kHz, 30 kHz or 570 kHz

Galvanostat
current ranges
A potentiostat measures current. For optimal precision, the range between which currents are measured is split into multiple current ranges. A current range defines the maximum current a potentiostat can measure in a certain range. This means it will also determine the resolution, because the number of bits or rather states is fixed, while the current range is variable.

10 nA, 1 uA, 100 uA, 10 mA

4 ranges

applied dc-current ±3 * CR (current range)
applied dc-current resolution 0.01% of CR
applied dc-
current accuracy
The current accuracy describes how close to the real values your measured current is.

<0.4% of current

±20 pA  ±0.2% of range

potential ranges

50 mV, 100 mV, 200 mV, 500 mV, 1 V

measured dc-potential resolution

96 µV at ±3 V (1 V range)
48 µV at ±1.5 V (500 mV)
19.2 µV at ±0.6 V (200 mV)
9.6 µV at ±0.3 V (100 mV)
4.8 µV at ±0.150 V (50 mV)

measured dc-potential accuracy ≤ 0.2% ±1 mV offset
bandwidth settings 320 Hz, 3.2 kHz, 30 kHz or 570 kHz
FRA / EIS
frequency range 10 µHz to 200 kHz
ac-amplitude range

1 mV to 900 mV rms, or 2.5 V p-p

GEIS
frequency range 10 µHz to 100 kHz
ac-amplitude range

0.9 * CR (Arms)

Electrometer
electrometer amplifier input
The amplifier input resistance of the amplifier in the electrometer determines the load that the amplifier places on the source of the signal being fed into it. Ideally the resistance is infinite, and the load to be zero to not to influence your measurement.
> 1 TΩ // 10 pF
bandwidth

10 kHz default or

500 kHz for EIS and fast CA/CP

Other
electrode connections

Two versions:

  • Sensor cable: WE, RE, CE and ground ending in 2 mm banana plugs
  • SPE connector: RE, WE and CE
housing

aluminum body only:
11.1 x 6.0 x 2.7 cm
with rubber sleeve:
11.8 x 6.8 x 3.3 cm

weight

± 310 g

communication

USB-C or wireless

Battery life
  • >6 hours with cell on at 10 mA current
  • charging up to 80% takes approx. 3.5 hours
  • a full charge takes approx. 5 hours
internal storage space

500 MB, equivalent to > 15M datapoints

EmStat4R EIS Accuracy Contour Plot
Note
The accuracy contour plots were determined with an ac-amplitude of ≤10 mV rms for all limits, except for the high impedance limit, which was determined using an ac-amplitude of 250 mV. The standard cables were used. Please note that the true limits of an impedance measurement are influenced by all components in the system, e.g. connections, the environment, and the cell.

Software

PSTrace

PSTrace is designed to be productive immediately after installation, without going through a long learning period. It has three modes; the Scientific mode which allows you to run all the techniques our instruments have to offer, and two dedicated modes for Corrosion analysis and the Analytical Mode. PSTrace is suitable for all levels of user experience.

Features include:

  • Direct validation of method parameters
  • Automated peak search
  • Equivalent Circuit Fitting
  • Scripting for running an automated sequence of measurements
  • Open data in Origin and Excel with one click of a button
  • Load data from the instrument’s internal storage
  • and many more…
More information about PSTrace
PSTrace Method Editor

PStouch

PStouch is an app for Android devices compatible with all PalmSens, EmStat and Sensit potentiostats. The app connects to your potentiostat via USB (depending on the Android device) or via Bluetooth.

PStouch features include:

  • Setting up and running measurements
  • All files compatible with PSTrace
  • Analysing and manipulating peaks
  • Sharing data directly via e-mail, Dropbox, or any other file sharing service

Get it on Google Play

More information about PStouch

Software Development Kits

PalmSens provides several Software Development Kits (SDKs) to help developers create custom software to control their potentiostat. Each SDK comes with documentation and examples that shows how to use the libraries.

SDKs are available for:

  • .NET (WinForms, WPF and Xamarin for Android)
  • Python
  • LabVIEW
  • Matlab
More information about our SDKs

MethodSCRIPT™ Communications Protocol

The EmStat4-series instruments work with MethodSCRIPT™, giving you full control over your potentiostat. The simple script language is parsed on-board, which means no DLLs or other type of code libraries are required. MethodSCRIPT™ allows for running all supported electrochemical techniques, making it easy to combine different measurements and other tasks. 

MethodSCRIPT can be generated, edited, and executed in PSTrace.

MethodSCRIPT features includes:

  • (Nested) loops and conditional logic support
  • User code during a measurement iteration
  • Exact timing control
  • Simple math operations on variables (add, sub, mul, div)
  • Data smoothing and peak detection
  • Digital I/O, for example for waiting for an external trigger
  • Logging results to internal storage or external SD card
  • Reading auxiliary values like pH or temperature
  • and many more…
MethodSCRIPT

Downloads

Documentation (6)

Name Last updated
EmStat4R Brochure The EmStat4R brochure contains an overview of all the supported techniques, specifications, kit contents, the software PSTrace, the Android app PSTouch and MethodSCRIPT 08-01-25
MethodSCRIPT v1.5 The MethodSCRIPT scripting language is designed to improve the flexibility of the PalmSens potentiostat and galvanostat devices for OEM users. It allows users to start measurements with arguments that are similar to the arguments in PSTrace. PalmSens provides libraries and examples for handling low level communication and generating scripts for MethodSCRIPT devices such as the EmStat Pico and EmStat4. 25-03-24
EmStat4M Communication Protocol V1.3 Describes how to communicate with the EmStat4M directly and how to send MethodSCRIPTS. 25-03-24
EmStat4R Operator’s Manual Learn how to connect the instrument, understand the specifications, use the features and troubleshoot if needed. 13-03-24
EmStat4M Communication Protocol V1.2 Describes how to communicate with the EmStat4M directly and how to send MethodSCRIPTS. 01-02-23
MethodSCRIPT v1.4 The MethodSCRIPT scripting language is designed to improve the flexibility of the PalmSens potentiostat and galvanostat devices for OEM users. It allows users to start measurements with arguments that are similar to the arguments in PSTrace. PalmSens provides libraries and examples for handling low level communication and generating scripts for MethodSCRIPT devices such as the EmStat Pico and EmStat4. 01-02-23

Software (1)

Name Last updated
PSTrace PC software for all single channel instruments PSTrace software is shipped as standard with all single channel and multiplexed instruments. The software provides support for all techniques and device functionalities. 08-07-24

Application Note (1)

Name Last updated
How to use Drop Detection with the SPE Connection Module Describes the functionality and working principle of Drop Detection with the SPE Connection Module for EmStat Go and EmStat4R. 03-10-22
bg
Compare Products